Build Mega Service of AvatarChatbot on Xeon¶
This document outlines the deployment process for a AvatarChatbot application utilizing the GenAIComps microservice pipeline on Intel Xeon server.
🚀 Build Docker images¶
1. Source Code install GenAIComps¶
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
2. Build ASR Image¶
docker build -t opea/whisper:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/asr/src/integrations/dependency/whisper/Dockerfile .
3. Build LLM Image¶
Intel Xeon optimized image hosted in huggingface repo will be used for TGI service: ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu (https://github.com/huggingface/text-generation-inference)
4. Build TTS Image¶
docker build -t opea/speecht5:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/tts/src/integrations/dependency/speecht5/Dockerfile .
5. Build Animation Image¶
docker build -t opea/wav2lip:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/wav2lip/src/Dockerfile .
docker build -t opea/animation:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/animation/src/Dockerfile .
6. Build MegaService Docker Image¶
To construct the Mega Service, we utilize the GenAIComps microservice pipeline within the audioqna.py
Python script. Build the MegaService Docker image using the command below:
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/AvatarChatbot/
docker build --no-cache -t opea/avatarchatbot:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
Then run the command docker images
, you will have following images ready:
opea/whisper:latest
opea/speecht5:latest
opea/wav2lip:latest
opea/animation:latest
opea/avatarchatbot:latest
🚀 Set the environment variables¶
Before starting the services with docker compose
, you have to recheck the following environment variables.
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
export host_ip=$(hostname -I | awk '{print $1}')
export LLM_MODEL_ID=Intel/neural-chat-7b-v3-3
export WAV2LIP_ENDPOINT=http://$host_ip:7860
export MEGA_SERVICE_HOST_IP=${host_ip}
export WHISPER_SERVER_HOST_IP=${host_ip}
export WHISPER_SERVER_PORT=7066
export SPEECHT5_SERVER_HOST_IP=${host_ip}
export SPEECHT5_SERVER_PORT=7055
export LLM_SERVER_HOST_IP=${host_ip}
export LLM_SERVER_PORT=3006
export ANIMATION_SERVICE_HOST_IP=${host_ip}
export ANIMATION_SERVICE_PORT=3008
export MEGA_SERVICE_PORT=8888
Xeon CPU
export DEVICE="cpu"
export WAV2LIP_PORT=7860
export INFERENCE_MODE='wav2lip_only'
export CHECKPOINT_PATH='/usr/local/lib/python3.11/site-packages/Wav2Lip/checkpoints/wav2lip_gan.pth'
export FACE="assets/img/avatar1.jpg"
# export AUDIO='assets/audio/eg3_ref.wav' # audio file path is optional, will use base64str in the post request as input if is 'None'
export AUDIO='None'
export FACESIZE=96
export OUTFILE="/outputs/result.mp4"
export GFPGAN_MODEL_VERSION=1.4 # latest version, can roll back to v1.3 if needed
export UPSCALE_FACTOR=1
export FPS=10
🚀 Start the MegaService¶
cd GenAIExamples/AvatarChatbot/docker_compose/intel/cpu/xeon/
docker compose -f compose.yaml up -d
🚀 Test MicroServices¶
# whisper service
curl http://${host_ip}:7066/v1/asr \
-X POST \
-d '{"audio": "UklGRigAAABXQVZFZm10IBIAAAABAAEARKwAAIhYAQACABAAAABkYXRhAgAAAAEA"}' \
-H 'Content-Type: application/json'
# tgi service
curl http://${host_ip}:3006/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
# speecht5 service
curl http://${host_ip}:7055/v1/tts \
-X POST \
-d '{"text": "Who are you?"}' \
-H 'Content-Type: application/json'
# wav2lip service
cd ../../../..
curl http://${host_ip}:7860/v1/wav2lip \
-X POST \
-d @assets/audio/sample_minecraft.json \
-H 'Content-Type: application/json'
# animation microservice
curl http://${host_ip}:3008/v1/animation \
-X POST \
-d @assets/audio/sample_question.json \
-H "Content-Type: application/json"
🚀 Test MegaService¶
curl http://${host_ip}:3009/v1/avatarchatbot \
-X POST \
-d @assets/audio/sample_whoareyou.json \
-H 'Content-Type: application/json'
If the megaservice is running properly, you should see the following output:
"/outputs/result.mp4"
The output file will be saved in the current working directory, as ${PWD}
is mapped to /outputs
inside the wav2lip-service Docker container.
Gradio UI¶
cd $WORKPATH/GenAIExamples/AvatarChatbot
python3 ui/gradio/app_gradio_demo_avatarchatbot.py
The UI can be viewed at http://${host_ip}:7861
In the current version v1.0, you need to set the avatar figure image/video and the DL model choice in the environment variables before starting AvatarChatbot backend service and running the UI. Please just customize the audio question in the UI.
** We will enable change of avatar figure between runs in v2.0
Troubleshooting¶
cd GenAIExamples/AvatarChatbot/tests
export IMAGE_REPO="opea"
export IMAGE_TAG="latest"
export HUGGINGFACEHUB_API_TOKEN=<your_hf_token>
test_avatarchatbot_on_xeon.sh