DocSum

Helm chart for deploying DocSum service.

DocSum depends on LLM microservice, refer to llm-uservice for more config details.

Installing the Chart

To install the chart, run the following:

cd GenAIInfra/helm-charts/
./update_dependency.sh
helm dependency update docsum
export HFTOKEN="insert-your-huggingface-token-here"
export MODELDIR="/mnt/opea-models"
export MODELNAME="Intel/neural-chat-7b-v3-3"
helm install docsum docsum --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME}
# To use Gaudi device with TGI
# helm install docsum docsum --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --values docsum/gaudi-tgi-values.yaml ...
# To use Gaudi device with vLLM
# helm install docsum docsum --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --values docsum/gaudi-vllm-values.yaml ..

Verify

To verify the installation, run the command kubectl get pod to make sure all pods are running.

Curl command and UI are the two options that can be leveraged to verify the result.

Verify the workload through curl command

Then run the command kubectl port-forward svc/docsum 8888:8888 to expose the DocSum service for access.

Open another terminal and run the following command to verify the service if working:

curl http://localhost:8888/v1/docsum \
    -H 'Content-Type: multipart/form-data' \
    -F "type=text" \
    -F "messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." \
    -F "max_tokens=32"

Verify the workload through UI

The UI has already been installed via the Helm chart. To access it, use the external IP of one your Kubernetes node along with docsum-ui service nodePort(If using the default docsum gradio UI) or along with the NGINX service nodePort. You can find the corresponding port using the following command:

# For docsum gradio UI
export port=$(kubectl get service docsum-docsum-ui --output='jsonpath={.spec.ports[0].nodePort}')
# For other docsum UI
# export port=$(kubectl get service docsum-nginx --output='jsonpath={.spec.ports[0].nodePort}')
echo $port

Open a browser to access http://<k8s-node-ip-address>:${port} to play with the DocSum workload.

Values

Key

Type

Default

Description

image.repository

string

"opea/docsum"

service.port

string

"8888"

tgi.LLM_MODEL_ID

string

"Intel/neural-chat-7b-v3-3"

Models id from https://huggingface.co/, or predownloaded model directory

global.monitoring

bool

false

Enable usage metrics for the service components. See ../monitoring.md before enabling!