guardrails-usvc¶
Helm chart for deploying Guardrails microservice.
Installing the chart¶
guardrails-usvc
depends on the following inference backend services:
TGI: please refer to tgi chart for more information
Use Meta Llama Guard models(default):¶
First, you need to install tgi
helm chart using the model meta-llama/Meta-Llama-Guard-2-8B
.
After you’ve deployed the dependent chart successfully, please run kubectl get svc
to get the backend inference service endpoint, e.g. http://tgi
.
To install the guardrails-usvc
chart, run the following:
cd GenAIInfra/helm-charts/common/guardrails-usvc
helm dependency update
export HFTOKEN="insert-your-huggingface-token-here"
export SAFETY_GUARD_ENDPOINT="http://tgi"
export SAFETY_GUARD_MODEL_ID="meta-llama/Meta-Llama-Guard-2-8B"
export GUARDRAILS_BACKEND="LLAMA"
helm install guardrails-usvc . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set SAFETY_GUARD_ENDPOINT=${SAFETY_GUARD_ENDPOINT} --set SAFETY_GUARD_MODEL_ID=${SAFETY_GUARD_MODEL_ID} --set GUARDRAILS_BACKEND=${GUARDRAILS_BACKEND} --wait
Use Allen Institute AI’s WildGuard models:¶
First, you need to install tgi
helm chart using the model allenai/wildguard
.
After you’ve deployed the dependent chart successfully, please run kubectl get svc
to get the backend inference service endpoint, e.g. http://tgi
.
To install the guardrails-usvc
chart, run the following:
cd GenAIInfra/helm-charts/common/guardrails-usvc
helm dependency update
export HFTOKEN="insert-your-huggingface-token-here"
export SAFETY_GUARD_ENDPOINT="http://tgi"
export SAFETY_GUARD_MODEL_ID="allenai/wildguard"
export GUARDRAILS_BACKEND="WILD"
helm install guardrails-usvc . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set SAFETY_GUARD_ENDPOINT=${SAFETY_GUARD_ENDPOINT} --set SAFETY_GUARD_MODEL_ID=${SAFETY_GUARD_MODEL_ID} --set GUARDRAILS_BACKEND=${GUARDRAILS_BACKEND} --wait
Verify¶
To verify the installation, run the command kubectl get pod
to make sure all pods are running.
Then run the command kubectl port-forward svc/guardrails-usvc 9090:9090
to expose the guardrails-usvc service for access.
Open another terminal and run the following command to verify the service if working:
curl http://localhost:9090/v1/guardrails \
-X POST \
-d '{"text":"How do you buy a tiger in the US?","parameters":{"max_new_tokens":32}}' \
-H 'Content-Type: application/json'
Values¶
Key |
Type |
Default |
Description |
---|---|---|---|
global.HUGGINGFACEHUB_API_TOKEN |
string |
|
Your own Hugging Face API token |
image.repository |
string |
|
|
service.port |
string |
|
|
SAFETY_GUARD_ENDPOINT |
string |
|
LLM endpoint |
SAFETY_GUARD_MODEL_ID |
string |
|
Model ID for the underlying LLM service is using |
GUARDRAIL_BACKEND |
string |
|
different gaurdrail model family to use, one of |