ChatQnA¶
Helm chart for deploying ChatQnA service. ChatQnA depends on the following services:
Installing the Chart¶
To install the chart, run the following:
cd GenAIInfra/helm-charts/
./update_dependency.sh
helm dependency update chatqna
export HFTOKEN="insert-your-huggingface-token-here"
export MODELDIR="/mnt/opea-models"
export MODELNAME="meta-llama/Meta-Llama-3-8B-Instruct"
# To use CPU with vLLM
helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set vllm.LLM_MODEL_ID=${MODELNAME}
# To use Gaudi device with vLLM
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set vllm.LLM_MODEL_ID=${MODELNAME} -f chatqna/gaudi-vllm-values.yaml
# To use CPU with TGI
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME} -f chatqna/cpu-tgi-values.yaml
# To use Gaudi device with TGI
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME} -f chatqna/gaudi-tgi-values.yaml
# To use Nvidia GPU with TGI
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME} -f chatqna/nv-values.yaml
# To include guardrail component in chatqna on Gaudi with TGI
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} -f chatqna/guardrails-gaudi-values.yaml
# To run chatqna with Intel TDX feature
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set vllm.LLM_MODEL_ID=${MODELNAME} --set redis-vector-db.tdxEnabled=true --set redis-vector-db.resources.limits.memory=4Gi --set retriever-usvc.tdxEnabled=true --set retriever-usvc.resources.limits.memory=7Gi --set tei.tdxEnabled=true --set tei.resources.limits.memory=4Gi --set teirerank.tdxEnabled=true --set teirerank.resources.limits.memory=6Gi --set nginx.tdxEnabled=true --set chatqna-ui.tdxEnabled=true --set chatqna-ui.resources.limits.memory=2Gi --set data-prep.tdxEnabled=true --set data-prep.resources.limits.memory=11Gi --set vllm.tdxEnabled=true --set vllm.resources.limits.memory=80Gi
IMPORTANT NOTE¶
Make sure your
MODELDIR
exists on the node where your workload is scheduled so you can cache the downloaded model for next time use. Otherwise, setglobal.modelUseHostPath
to ‘null’ if you don’t want to cache the model.
Verify¶
To verify the installation, run the command kubectl get pod
to make sure all pods are running.
Curl command and UI are the two options that can be leveraged to verify the result.
Verify the workload through curl command¶
Run the command kubectl port-forward svc/chatqna 8888:8888
to expose the service for access.
Open another terminal and run the following command to verify the service if working:
curl http://localhost:8888/v1/chatqna \
-H "Content-Type: application/json" \
-d '{"messages": "What is the revenue of Nike in 2023?"}'
Verify the workload through UI¶
The UI has already been installed via the Helm chart. To access it, use the external IP of one your Kubernetes node along with the NGINX port. You can find the NGINX port using the following command:
export port=$(kubectl get service chatqna-nginx --output='jsonpath={.spec.ports[0].nodePort}')
echo $port
Open a browser to access http://<k8s-node-ip-address>:${port}
to play with the ChatQnA workload.
Values¶
Key |
Type |
Default |
Description |
---|---|---|---|
image.repository |
string |
|
|
service.port |
string |
|
|
tgi.LLM_MODEL_ID |
string |
|
Inference models for TGI |
vllm.LLM_MODEL_ID |
string |
|
Inference models for vLLM |
global.monitoring |
bool |
|
Enable usage metrics for the service components. See ../monitoring.md before enabling! |
Troubleshooting¶
If you encounter any issues, please refer to ChatQnA Troubleshooting