ChatQnA

Helm chart for deploying ChatQnA service. ChatQnA depends on the following services:

Installing the Chart

To install the chart, run the following:

cd GenAIInfra/helm-charts/
./update_dependency.sh
helm dependency update chatqna
export HFTOKEN="insert-your-huggingface-token-here"
export MODELDIR="/mnt/opea-models"
export MODELNAME="Intel/neural-chat-7b-v3-3"
# If you would like to use the traditional UI, please change the image as well as the containerport within the values
# append these at the end of the command "--set chatqna-ui.image.repository=opea/chatqna-ui,chatqna-ui.image.tag=latest,chatqna-ui.containerPort=5173"
helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME}
# To use Gaudi device with TGI
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME} -f chatqna/gaudi-tgi-values.yaml
# To use Gaudi device with vLLM
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME} -f chatqna/gaudi-vllm-values.yaml
# To use Nvidia GPU
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} --set tgi.LLM_MODEL_ID=${MODELNAME} -f chatqna/nv-values.yaml
# To include guardrail component in chatqna on Xeon with TGI
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} -f chatqna/guardrails-values.yaml
# To include guardrail component in chatqna on Gaudi with TGI
#helm install chatqna chatqna --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set global.modelUseHostPath=${MODELDIR} -f chatqna/guardrails-gaudi-values.yaml

IMPORTANT NOTE

  1. Make sure your MODELDIR exists on the node where your workload is scheduled so you can cache the downloaded model for next time use. Otherwise, set global.modelUseHostPath to ‘null’ if you don’t want to cache the model.

Verify

To verify the installation, run the command kubectl get pod to make sure all pods are running.

Curl command and UI are the two options that can be leveraged to verify the result.

Verify the workload through curl command

Run the command kubectl port-forward svc/chatqna 8888:8888 to expose the service for access.

Open another terminal and run the following command to verify the service if working:

curl http://localhost:8888/v1/chatqna \
    -H "Content-Type: application/json" \
    -d '{"messages": "What is the revenue of Nike in 2023?"}'

Verify the workload through UI

The UI has already been installed via the Helm chart. To access it, use the external IP of one your Kubernetes node along with the NGINX port. You can find the NGINX port using the following command:

export port=$(kubectl get service chatqna-nginx --output='jsonpath={.spec.ports[0].nodePort}')
echo $port

Open a browser to access http://<k8s-node-ip-address>:${port} to play with the ChatQnA workload.

Values

Key

Type

Default

Description

image.repository

string

"opea/chatqna"

service.port

string

"8888"

tgi.LLM_MODEL_ID

string

"Intel/neural-chat-7b-v3-3"

Models id from https://huggingface.co/, or predownloaded model directory

global.monitoring

bool

false

Enable usage metrics for the service components. See ../monitoring.md before enabling!

Troubleshooting

If you encounter any issues, please refer to ChatQnA Troubleshooting