Evaluation Methodology

Introduction

Retrieval-Augmented Generation (RAG) has recently gained traction in natural language processing. Numerous studies and real-world applications are leveraging its ability to enhance generative models through external information retrieval.

For evaluating the accuracy of a RAG pipeline, we use 2 latest published datasets and 10+ metrics which are popular and comprehensive:

  • Dataset

  • metrics (measure accuracy of both the context retrieval and response generation)

    • evaluation for retrieval/reranking

      • MRR@10

      • MAP@10

      • Hits@10

      • Hits@4

      • LLM-as-a-Judge

    • evaluation for the generated response from the end-to-end pipeline

      • BLEU

      • ROUGE(L)

      • LLM-as-a-Judge

Prerequisite

Environment

git clone https://github.com/opea-project/GenAIEval
cd GenAIEval
pip install -r requirements.txt
pip install -e .

MultiHop (English dataset)

MultiHop-RAG: a QA dataset to evaluate retrieval and reasoning across documents with metadata in the RAG pipelines. It contains 2556 queries, with evidence for each query distributed across 2 to 4 documents. The queries also involve document metadata, reflecting complex scenarios commonly found in real-world RAG applications.

Launch Service of RAG System

Please refer to this guide to launch the service of RAG system.

Launch Service of LLM-as-a-Judge

To setup a LLM model, we can use tgi-gaudi to launch a service. For example, the follow command is to setup the mistralai/Mixtral-8x7B-Instruct-v0.1 model on 2 Gaudi2 cards:

# please set your llm_port and hf_token

docker run -p {your_llm_port}:80 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e PT_HPU_ENABLE_LAZY_COLLECTIVES=true -e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN={your_hf_token} --cap-add=sys_nice --ipc=host ghcr.io/huggingface/tgi-gaudi:2.0.1 --model-id mistralai/Mixtral-8x7B-Instruct-v0.1 --max-input-tokens 2048 --max-total-tokens 4096 --sharded true --num-shard 2

Prepare Dataset

We use the evaluation dataset from MultiHop-RAG repo, use the below command to prepare the dataset.

cd evals/evaluation/rag_eval/examples
git clone https://github.com/yixuantt/MultiHop-RAG.git

Evaluation

Use below command to run the evaluation, please note that for the first run, argument --ingest_docs should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted. Set --retrieval_metrics to get retrieval related metrics (MRR@10/MAP@10/Hits@10/Hits@4). Set --ragas_metrics and --llm_endpoint to get end-to-end rag pipeline metrics (faithfulness/answer_relevancy/…), which are judged by LLMs. We set --limits is 100 as default, which means only 100 examples are evaluated by llm-as-judge as it is very time consuming.

If you are using docker compose to deploy RAG system, you can simply run the evaluation as following:

python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json  --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate

If you are using Kubernetes manifest/helm to deploy RAG system, you must specify more arguments as following:

python eval_multihop.py --docs_path MultiHop-RAG/dataset/corpus.json  --dataset_path MultiHop-RAG/dataset/MultiHopRAG.json --ingest_docs --retrieval_metrics --ragas_metrics --llm_endpoint http://{llm_as_judge_ip}:{llm_as_judge_port}/generate --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --tei_embedding_endpoint http://{your_tei_embedding_ip}:{your_tei_embedding_port} --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna

The default values for arguments are:

Argument

Default value

service_url

http://localhost:8888/v1/chatqna

database_endpoint

http://localhost:6007/v1/dataprep

embedding_endpoint

http://localhost:6000/v1/embeddings

tei_embedding_endpoint

http://localhost:8090

retrieval_endpoint

http://localhost:7000/v1/retrieval

reranking_endpoint

http://localhost:8000/v1/reranking

output_dir

./output

temperature

0.1

max_new_tokens

1280

chunk_size

256

chunk_overlap

100

search_type

similarity

retrival_k

10

fetch_k

20

lambda_mult

0.5

dataset_path

../data/split_merged.json

docs_path

../data/80000_docs

tasks

[“question_answering”]

limits

100

You can check arguments details use below command:

python eval_multihop.py --help

CRUD (Chinese dataset)

CRUD-RAG is a Chinese benchmark for RAG (Retrieval-Augmented Generation) system. This example utilize CRUD-RAG for evaluating the RAG system.

Prepare Dataset

We use the evaluation dataset from CRUD-RAG repo, use the below command to prepare the dataset.

cd evals/evaluation/rag_eval
git clone https://github.com/IAAR-Shanghai/CRUD_RAG
mkdir data/
cp CRUD_RAG/data/crud_split/split_merged.json data/
cp -r CRUD_RAG/data/80000_docs/ data/
python examples/process_crud_dataset.py

Launch Service of RAG System

Please refer to this guide to launch the service of RAG system. For Chinese dataset, you should replace the English emebdding and llm model with Chinese, for example, EMBEDDING_MODEL_ID="BAAI/bge-base-zh-v1.5" and LLM_MODEL_ID=Qwen/Qwen2-7B-Instruct.

Evaluation

Use below command to run the evaluation, please note that for the first run, argument --ingest_docs should be added in the command to ingest the documents into the vector database, while for the subsequent run, this argument should be omitted.

If you are using docker compose to deploy RAG system, you can simply run the evaluation as following:

cd examples
python eval_crud.py --dataset_path ../data/split_merged.json --docs_path ../data/80000_docs --ingest_docs

If you are using Kubernetes manifest/helm to deploy RAG system, you must specify more arguments as following:

cd examples
python eval_crud.py --dataset_path ../data/split_merged.json --docs_path ../data/80000_docs --ingest_docs --database_endpoint http://{your_dataprep_ip}:{your_dataprep_port}/v1/dataprep --embedding_endpoint http://{your_embedding_ip}:{your_embedding_port}/v1/embeddings --retrieval_endpoint http://{your_retrieval_ip}:{your_retrieval_port}/v1/retrieval --service_url http://{your_chatqna_ip}:{your_chatqna_port}/v1/chatqna

The default values for arguments are:

Argument

Default value

service_url

http://localhost:8888/v1/chatqna

database_endpoint

http://localhost:6007/v1/dataprep

embedding_endpoint

http://localhost:6000/v1/embeddings

retrieval_endpoint

http://localhost:7000/v1/retrieval

reranking_endpoint

http://localhost:8000/v1/reranking

output_dir

./output

temperature

0.1

max_new_tokens

1280

chunk_size

256

chunk_overlap

100

dataset_path

../data/split_merged.json

docs_path

../data/80000_docs

tasks

[“question_answering”]

You can check arguments details use below command:

python eval_crud.py --help

Acknowledgements

This example is mostly adapted from MultiHop-RAG and CRUD-RAG repo, we thank the authors for their great work!