Build and deploy DocSum Application on AMD GPU (ROCm)¶
Build images¶
🚀 Build Docker Images¶
First of all, you need to build Docker Images locally and install the python package of it.
1. Build LLM Image¶
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/doc-summarization/Dockerfile .
Then run the command docker images
, you will have the following four Docker Images:
2. Build MegaService Docker Image¶
To construct the Mega Service, we utilize the GenAIComps microservice pipeline within the docsum.py
Python script. Build the MegaService Docker image via below command:
git clone https://github.com/opea-project/GenAIExamples
cd GenAIExamples/DocSum/
docker build -t opea/docsum:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
3. Build UI Docker Image¶
Build the frontend Docker image via below command:
cd GenAIExamples/DocSum/ui
docker build -t opea/docsum-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile .
Then run the command docker images
, you will have the following Docker Images:
opea/llm-docsum-tgi:latest
opea/docsum:latest
opea/docsum-ui:latest
4. Build React UI Docker Image¶
Build the frontend Docker image via below command:
cd GenAIExamples/DocSum/ui
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/docsum"
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT -f ./docker/Dockerfile.react .
docker build -t opea/docsum-react-ui:latest --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
Then run the command docker images
, you will have the following Docker Images:
opea/llm-docsum-tgi:latest
opea/docsum:latest
opea/docsum-ui:latest
opea/docsum-react-ui:latest
🚀 Start Microservices and MegaService¶
Required Models¶
Default model is “Intel/neural-chat-7b-v3-3”. Change “LLM_MODEL_ID” in environment variables below if you want to use another model. For gated models, you also need to provide HuggingFace token in “HUGGINGFACEHUB_API_TOKEN” environment variable.
Setup Environment Variables¶
Since the compose.yaml
will consume some environment variables, you need to setup them in advance as below.
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${host_ip}
export DOCSUM_TGI_SERVICE_PORT="18882"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export DOCSUM_LLM_SERVER_PORT="8008"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5173"
export DocSum_COMPONENT_NAME="OpeaDocSumTgi"
Note: Please replace with host_ip
with your external IP address, do not use localhost.
Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered
Example for set isolation for 1 GPU
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
Example for set isolation for 2 GPUs
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
- /dev/dri/card1:/dev/dri/card1
- /dev/dri/renderD129:/dev/dri/renderD129
Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)
Start Microservice Docker Containers¶
cd GenAIExamples/DocSum/docker_compose/amd/gpu/rocm
docker compose up -d
Validate Microservices¶
TGI Service
curl http://${host_ip}:8008/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \ -H 'Content-Type: application/json'
LLM Microservice
curl http://${host_ip}:9000/v1/docsum \ -X POST \ -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \ -H 'Content-Type: application/json'
MegaService
curl http://${host_ip}:8888/v1/docsum -H "Content-Type: application/json" -d '{ "messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32, "language":"en", "stream":false }'
🚀 Launch the Svelte UI¶
Open this URL http://{host_ip}:5173
in your browser to access the frontend.
Here is an example for summarizing a article.
🚀 Launch the React UI (Optional)¶
To access the React-based frontend, modify the UI service in the compose.yaml
file. Replace docsum-rocm-ui-server
service with the docsum-rocm-react-ui-server
service as per the config below:
docsum-rocm-react-ui-server:
image: ${REGISTRY:-opea}/docsum-react-ui:${TAG:-latest}
container_name: docsum-rocm-react-ui-server
depends_on:
- docsum-rocm-backend-server
ports:
- "5174:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
Open this URL http://{host_ip}:5175
in your browser to access the frontend.