reranking-usvc

Helm chart for deploying reranking microservice.

reranking-usvc depends on teirerank, set the TEI_RERANKING_ENDPOINT as teirerank endpoint.

(Option1): Installing the chart separately

First, you need to install the teirerank chart, please refer to the teirerank chart for more information.

After you’ve deployted the teirerank chart successfully, please run kubectl get svc to get the tei service endpoint, i.e. http://teirerank.

To install the reranking-usvc chart, run the following:

cd GenAIInfra/helm-charts/common/reranking-usvc
export TEI_RERANKING_ENDPOINT="http://teirerank"
helm dependency update
helm install reranking-usvc . --set TEI_RERANKING_ENDPOINT=${TEI_RERANKING_ENDPOINT}

(Option2): Installing the chart with dependencies automatically

cd GenAIInfra/helm-charts/common/reranking-usvc
helm dependency update
helm install reranking-usvc . --set teirerank.enabled=true

Verify

To verify the installation, run the command kubectl get pod to make sure all pods are running.

Then run the command kubectl port-forward svc/reranking-usvc 8000:8000 to expose the reranking-usvc service for access.

Open another terminal and run the following command to verify the service if working:

curl http://localhost:8000/v1/reranking \
    -X POST \
    -d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
    -H 'Content-Type: application/json'

Values

Key

Type

Default

Description

image.repository

string

"opea/reranking-tgi"

RERANK_BACKEND

string

"TEI"

backend engine to use, one of “TEI”, “VideoRerank”

TEI_RERANKING_ENDPOINT

string

""

service.port

string

"8000"

global.monitoring

bool

false