lvm-uservice¶
Helm chart for deploying LVM microservice.
lvm-uservice depends on TGI, you should set LVM_ENDPOINT as tgi endpoint.
(Option1): Installing the chart separately¶
First, you need to install the tgi chart, please refer to the tgi chart for more information.
After you’ve deployted the tgi chart successfully, please run kubectl get svc
to get the tgi service endpoint, i.e. http://tgi
.
To install the chart, run the following:
cd GenAIInfra/helm-charts/common/lvm-uservice
export HFTOKEN="insert-your-huggingface-token-here"
export LVM_ENDPOINT="http://tgi"
helm dependency update
helm install lvm-uservice . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set LVM_ENDPOINT=${LVM_ENDPOINT} --wait
(Option2): Installing the chart with dependencies automatically¶
cd GenAIInfra/helm-charts/common/lvm-uservice
export HFTOKEN="insert-your-huggingface-token-here"
helm dependency update
helm install lvm-uservice . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set tgi.enabled=true --wait
Verify¶
To verify the installation, run the command kubectl get pod
to make sure all pods are running.
Then run the command kubectl port-forward svc/lvm-uservice 9000:9000
to expose the lvm-uservice service for access.
Open another terminal and run the following command to verify the service if working:
curl http://localhost:9000/v1/chat/completions \
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
-H 'Content-Type: application/json'
Values¶
Key |
Type |
Default |
Description |
---|---|---|---|
global.HUGGINGFACEHUB_API_TOKEN |
string |
|
Your own Hugging Face API token |
image.repository |
string |
|
|
service.port |
string |
|
|
LVM_ENDPOINT |
string |
|
LVM endpoint |
global.monitoring |
bool |
|
Service usage metrics |