Edge Craft Retrieval-Augmented Generation¶
Edge Craft RAG (EC-RAG) is a customizable, tunable and production-ready Retrieval-Augmented Generation system for edge solutions. It is designed to curate the RAG pipeline to meet hardware requirements at edge with guaranteed quality and performance.
Quick Start Guide¶
(Optional) Build Docker Images for Mega Service, Server and UI by your own¶
If you want to build the images by your own, please follow the steps:
cd GenAIExamples/EdgeCraftRAG
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy --build-arg no_proxy=$no_proxy -t opea/edgecraftrag:latest -f Dockerfile .
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy --build-arg no_proxy=$no_proxy -t opea/edgecraftrag-server:latest -f Dockerfile.server .
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy --build-arg no_proxy=$no_proxy -t opea/edgecraftrag-ui:latest -f ui/docker/Dockerfile.ui .
Using Intel Arc GPU¶
Local inference with OpenVINO for Intel Arc GPU¶
You can select “local” type in generation field which is the default approach to enable Intel Arc GPU for LLM. You don’t need to build images for “local” type.
vLLM with OpenVINO for Intel Arc GPU¶
You can also select “vLLM” as generation type, to enable this type, you’ll need to build the vLLM image for Intel Arc GPU before service bootstrap. Please follow this link vLLM with OpenVINO to build the vLLM image.
Start Edge Craft RAG Services with Docker Compose¶
If you want to enable vLLM with OpenVINO service, please finish the steps in Launch vLLM with OpenVINO service first.
cd GenAIExamples/EdgeCraftRAG/docker_compose/intel/gpu/arc
export MODEL_PATH="your model path for all your models"
export DOC_PATH="your doc path for uploading a dir of files"
export GRADIO_PATH="your gradio cache path for transferring files"
# Make sure all 3 folders have 1000:1000 permission, otherwise
# chown 1000:1000 ${MODEL_PATH} ${DOC_PATH} ${GRADIO_PATH}
# Use `ip a` to check your active ip
export HOST_IP="your host ip"
# Check group id of video and render
export VIDEOGROUPID=$(getent group video | cut -d: -f3)
export RENDERGROUPID=$(getent group render | cut -d: -f3)
# If you have a proxy configured, uncomment below line
# export no_proxy=${no_proxy},${HOST_IP},edgecraftrag,edgecraftrag-server
# export NO_PROXY=${NO_PROXY},${HOST_IP},edgecraftrag,edgecraftrag-server
# If you have a HF mirror configured, it will be imported to the container
# export HF_ENDPOINT="your HF mirror endpoint"
# By default, the ports of the containers are set, uncomment if you want to change
# export MEGA_SERVICE_PORT=16011
# export PIPELINE_SERVICE_PORT=16011
# export UI_SERVICE_PORT="8082"
# Prepare models for embedding, reranking and generation, you can also choose other OpenVINO optimized models
# Here is the example:
pip install --upgrade --upgrade-strategy eager "optimum[openvino]"
optimum-cli export openvino -m BAAI/bge-small-en-v1.5 ${MODEL_PATH}/BAAI/bge-small-en-v1.5 --task sentence-similarity
optimum-cli export openvino -m BAAI/bge-reranker-large ${MODEL_PATH}/BAAI/bge-reranker-large --task sentence-similarity
optimum-cli export openvino -m Qwen/Qwen2-7B-Instruct ${MODEL_PATH}/Qwen/Qwen2-7B-Instruct/INT4_compressed_weights --weight-format int4
docker compose up -d
(Optional) Launch vLLM with OpenVINO service¶
Set up Environment Variables
export LLM_MODEL=#your model id
export VLLM_SERVICE_PORT=8008
export vLLM_ENDPOINT="http://${HOST_IP}:${VLLM_SERVICE_PORT}"
export HUGGINGFACEHUB_API_TOKEN=#your HF token
Uncomment below code in ‘GenAIExamples/EdgeCraftRAG/docker_compose/intel/gpu/arc/compose.yaml’
# vllm-openvino-server:
# container_name: vllm-openvino-server
# image: opea/vllm-arc:latest
# ports:
# - ${VLLM_SERVICE_PORT:-8008}:80
# environment:
# HTTPS_PROXY: ${https_proxy}
# HTTP_PROXY: ${https_proxy}
# VLLM_OPENVINO_DEVICE: GPU
# HF_ENDPOINT: ${HF_ENDPOINT}
# HF_TOKEN: ${HUGGINGFACEHUB_API_TOKEN}
# volumes:
# - /dev/dri/by-path:/dev/dri/by-path
# - $HOME/.cache/huggingface:/root/.cache/huggingface
# devices:
# - /dev/dri
# entrypoint: /bin/bash -c "\
# cd / && \
# export VLLM_CPU_KVCACHE_SPACE=50 && \
# export VLLM_OPENVINO_ENABLE_QUANTIZED_WEIGHTS=ON && \
# python3 -m vllm.entrypoints.openai.api_server \
# --model '${LLM_MODEL}' \
# --max_model_len=1024 \
# --host 0.0.0.0 \
# --port 80"
ChatQnA with LLM Example (Command Line)¶
cd GenAIExamples/EdgeCraftRAG
# Activate pipeline test_pipeline_local_llm
curl -X POST http://${HOST_IP}:16010/v1/settings/pipelines -H "Content-Type: application/json" -d @tests/test_pipeline_local_llm.json | jq '.'
# Will need to wait for several minutes
# Expected output:
# {
# "idx": "3214cf25-8dff-46e6-b7d1-1811f237cf8c",
# "name": "rag_test",
# "comp_type": "pipeline",
# "node_parser": {
# "idx": "ababed12-c192-4cbb-b27e-e49c76a751ca",
# "parser_type": "simple",
# "chunk_size": 400,
# "chunk_overlap": 48
# },
# "indexer": {
# "idx": "46969b63-8a32-4142-874d-d5c86ee9e228",
# "indexer_type": "faiss_vector",
# "model": {
# "idx": "7aae57c0-13a4-4a15-aecb-46c2ec8fe738",
# "type": "embedding",
# "model_id": "BAAI/bge-small-en-v1.5",
# "model_path": "/home/user/models/bge_ov_embedding",
# "device": "auto"
# }
# },
# "retriever": {
# "idx": "3747fa59-ff9b-49b6-a8e8-03cdf8c979a4",
# "retriever_type": "vectorsimilarity",
# "retrieve_topk": 30
# },
# "postprocessor": [
# {
# "idx": "d46a6cae-ba7a-412e-85b7-d334f175efaa",
# "postprocessor_type": "reranker",
# "model": {
# "idx": "374e7471-bd7d-41d0-b69d-a749a052b4b0",
# "type": "reranker",
# "model_id": "BAAI/bge-reranker-large",
# "model_path": "/home/user/models/bge_ov_reranker",
# "device": "auto"
# },
# "top_n": 2
# }
# ],
# "generator": {
# "idx": "52d8f112-6290-4dd3-bc28-f9bd5deeb7c8",
# "generator_type": "local",
# "model": {
# "idx": "fa0c11e1-46d1-4df8-a6d8-48cf6b99eff3",
# "type": "llm",
# "model_id": "qwen2-7b-instruct",
# "model_path": "/home/user/models/qwen2-7b-instruct/INT4_compressed_weights",
# "device": "auto"
# }
# },
# "status": {
# "active": true
# }
# }
# Prepare data from local directory
curl -X POST http://${HOST_IP}:16010/v1/data -H "Content-Type: application/json" -d '{"local_path":"docs/#REPLACE WITH YOUR DIR WITHIN MOUNTED DOC PATH#"}' | jq '.'
# Validate Mega Service
curl -X POST http://${HOST_IP}:16011/v1/chatqna -H "Content-Type: application/json" -d '{"messages":"#REPLACE WITH YOUR QUESTION HERE#", "top_n":5, "max_tokens":512}' | jq '.'
ChatQnA with LLM Example (UI)¶
Open your browser, access http://${HOST_IP}:8082
Your browser should be running on the same host of your console, otherwise you will need to access UI with your host domain name instead of ${HOST_IP}.
To create a default pipeline, you need to click the Create Pipeline
button on the RAG Settings
page. You can also create multiple pipelines or update existing pipelines through the Pipeline Configuration
, but please note that active pipelines cannot be updated.
After the pipeline creation, you can upload your data in the Chatbot
page.
Then, you can submit messages in the chat box.
Advanced User Guide¶
Pipeline Management¶
Create a pipeline¶
curl -X POST http://${HOST_IP}:16010/v1/settings/pipelines -H "Content-Type: application/json" -d @tests/test_pipeline_local_llm.json | jq '.'
Update a pipeline¶
curl -X PATCH http://${HOST_IP}:16010/v1/settings/pipelines -H "Content-Type: application/json" -d @tests/test_pipeline_local_llm.json | jq '.'
Check all pipelines¶
curl -X GET http://${HOST_IP}:16010/v1/settings/pipelines -H "Content-Type: application/json" | jq '.'
Activate a pipeline¶
curl -X PATCH http://${HOST_IP}:16010/v1/settings/pipelines/test1 -H "Content-Type: application/json" -d '{"active": "true"}' | jq '.'
Model Management¶
Load a model¶
curl -X POST http://${HOST_IP}:16010/v1/settings/models -H "Content-Type: application/json" -d '{"model_type": "reranker", "model_id": "BAAI/bge-reranker-large", "model_path": "./models/bge_ov_reranker", "device": "cpu"}' | jq '.'
It will take some time to load the model.
Check all models¶
curl -X GET http://${HOST_IP}:16010/v1/settings/models -H "Content-Type: application/json" | jq '.'
Update a model¶
curl -X PATCH http://${HOST_IP}:16010/v1/settings/models/BAAI/bge-reranker-large -H "Content-Type: application/json" -d '{"model_type": "reranker", "model_id": "BAAI/bge-reranker-large", "model_path": "./models/bge_ov_reranker", "device": "gpu"}' | jq '.'
Check a certain model¶
curl -X GET http://${HOST_IP}:16010/v1/settings/models/BAAI/bge-reranker-large -H "Content-Type: application/json" | jq '.'
Delete a model¶
curl -X DELETE http://${HOST_IP}:16010/v1/settings/models/BAAI/bge-reranker-large -H "Content-Type: application/json" | jq '.'
File Management¶
Add a text¶
curl -X POST http://${HOST_IP}:16010/v1/data -H "Content-Type: application/json" -d '{"text":"#REPLACE WITH YOUR TEXT"}' | jq '.'
Add files from existed file path¶
curl -X POST http://${HOST_IP}:16010/v1/data -H "Content-Type: application/json" -d '{"local_path":"docs/#REPLACE WITH YOUR DIR WITHIN MOUNTED DOC PATH#"}' | jq '.'
curl -X POST http://${HOST_IP}:16010/v1/data -H "Content-Type: application/json" -d '{"local_path":"docs/#REPLACE WITH YOUR FILE WITHIN MOUNTED DOC PATH#"}' | jq '.'
Check all files¶
curl -X GET http://${HOST_IP}:16010/v1/data/files -H "Content-Type: application/json" | jq '.'
Check one file¶
curl -X GET http://${HOST_IP}:16010/v1/data/files/test2.docx -H "Content-Type: application/json" | jq '.'
Delete a file¶
curl -X DELETE http://${HOST_IP}:16010/v1/data/files/test2.docx -H "Content-Type: application/json" | jq '.'
Update a file¶
curl -X PATCH http://${HOST_IP}:16010/v1/data/files/test.pdf -H "Content-Type: application/json" -d '{"local_path":"docs/#REPLACE WITH YOUR FILE WITHIN MOUNTED DOC PATH#"}' | jq '.'