Edge Craft Retrieval-Augmented Generation Application

Edge Craft RAG (EC-RAG) is a customizable, tunable and production-ready Retrieval-Augmented Generation system for edge solutions. It is designed to curate the RAG pipeline to meet hardware requirements at edge with guaranteed quality and performance.

Table of contents

  1. Architecture

  2. Deployment Options

Architecture

The architecture of the Edge Craft Retrieval-Augmented Generation Application is illustrated below:

flowchart TD EC_RAG_UI[EC-RAG UI] EC_RAG_Gateway[EC-RAG Gateway] Vector_DB[(Vector DB)] LLM[[LLM]] %% Mega Service 组 subgraph MegaService["Mega Service"] subgraph EC_RAG_Pipeline["EC-RAG Pipeline"] %% Indexing 线 subgraph Indexing["Indexing"] Preprocessor[Preprocessor] Node_Parser[Node Parser] Indexer[Indexer] end %% Inference 线 subgraph Inference["Inference"] Retriever[Retriever] Postprocessor[Postprocessor] Generator[Generator] end Knowledge_Base[(Knowledge Base)] Benchmark_Hook[Benchmark Hook] end end %% UI <-> Gateway EC_RAG_UI <--> EC_RAG_Gateway %% UI -> Pipeline (Configure/Indexing) EC_RAG_UI -. Configure .-> EC_RAG_Pipeline EC_RAG_UI -->|Indexing| EC_RAG_Pipeline %% Gateway -> Pipeline (Inference) EC_RAG_Gateway -->|Inference| MegaService Preprocessor --> Node_Parser Node_Parser --> Indexer Indexer --> Knowledge_Base Retriever --> Postprocessor Postprocessor --> Generator Knowledge_Base --> Vector_DB Indexer --> Vector_DB Generator -->|Inference| LLM Retriever -. Configure .-> LLM Postprocessor -. Configure .-> LLM %% Benchmark Hook Benchmark_Hook -.-> Generator classDef external fill:#f9f,stroke:#333 classDef storage fill:#bbf,stroke:#66c classDef process fill:#dfd,stroke:#090 classDef config stroke-dasharray: 5 5 class EC_RAG_UI,EC_RAG_Gateway,LLM external class Vector_DB,Knowledge_Base storage class Preprocessor,Node_Parser,Indexer,Retriever,Postprocessor,Generator,Benchmark_Hook process class Configure,config config

Deployment Options

The table below lists the available deployment options and their implementation details for different hardware platforms.

Platform

Deployment Method

Link

Intel Arc

Docker compose

Deployment on Arc

Validated Configurations

Deploy Method

LLM Engine

LLM Model

Hardware

Docker Compose

vLLM

Qwen3-8B

Intel Arc