Customize with new VectorDB¶
Please refer Contributing A New Vector Database to OPEA
Customize the VectorDB for the ChatQnA Example¶
The OPEA sub-project GenAIExamples houses multiple GenAI RAG sample applications such as chatbots, document summarization, code generation, and code translation to name a few. The ChatQnA application is the primary example and contains instructions to deploy on a variety of hardware (such as Intel CPUs and Gaudi accelerator and AMD’s ROCm), in environments such as Docker and Kubernetes, including how to customize an application pipeline using different vector database backends.
Add new VectorDB to ChatQnA Example¶
This deployment section covers how to add a new Vector DB to ChatQnA example with OPEA comps. Here we will be showcasing how to build an (end-to-end) e2e ChatQnA with a new VectorDB.
Overview¶
There are several ways to setup a ChatQnA use case with different VectorDBs. Here in this tutorial, we will walk through how to enable a new VectorDB with the below list of microservices from OPEA: GenAIComps to setup a ChatQnA.
1. Data Prep
2. Embedding
3. Retriever
4. Reranking
5. LLM with Ollama
To add a new VectorDB to OPEA involves minimal changes to OPEA sub-project GenAIComps that covers installation, launch, usage, and tests. The necessary customizations are covered in detail [here]
Prerequisites¶
We start by cloning the GenAIExamples and GenAIComps projects. GenAIComps is the fundamental and necessary component used to build the examples examples you find in GenAIExamples and deploy them as microservices. Next, set an environment variable for the desired release version with the number only (i.e. 1.0, 1.1, etc) and checkout using the tag with that version. The GenAIComps should contain the customized components(third_party, dataprep, retrievers) for the VectorDB as mentioned before.
# Set workspace
export WORKSPACE=<path>
cd $WORKSPACE
# Set desired release version - number only
export RELEASE_VERSION=<insert-release-version>
# GenAIComps
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
git checkout tags/v${RELEASE_VERSION}
cd ..
# GenAIExamples
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples
git checkout tags/v${RELEASE_VERSION}
cd ..
To customize ChatQnA with the new VectorDB the changes are in GenAIExamples/ChatQnA
ChatQnA
|__docker_compose
|__intel
|__cpu/xeon
| |__compose_<Vector_DB>.yaml
| |__<Vector_DB>.yaml
| |__README_<Vector_DB>.md
|__hpu/gaudi
|__compose_<Vector_DB>.yaml
|__README_<Vector_DB>.md
VectorDB.yaml adds the VectorDB specific configurations
compose_<Vector_DB>.yaml contains all the necessary configs to launch a ChatQnA pipeline with the VectorDB. The different microservices are configured in different sections
services: VectorDB specific services and healthcheck
dataprep-<Vector_DB>-service: this references opea-project/GenAIComps/comps/dataprep/ opea-project/GenAIComps/comps/dataprep/deployment/docker_compose/compose.yaml
retriever-<Vector_DB>-service: this references opea-project/GenAIComps/comps/retrievers/deployment/docker_compose/compose.yaml
tei-embedding-service: references TEI component
tei-reranking-service: references ReRanking component
vllm-service: the inference Serving service
chatqna-xeon-backend-server: For Xeon only
chatqna-xeon-ui-server: for Xeon only
chatqna-xeon-nginx-server: Load balancer for Xeon only
chatqna-gaudi-backend-server: for Gaudi only
chatqna-gaudi-ui-server: for Gaudi only
chatqna-gaudi-nginx-server:Load balancer for Gaudi only
README_<Vector_DB>.md adds details to start the Mega service of ChatQnA on Xeon in respective folders
README_<Vector_DB>.md adds details to start the Mega service of ChatQnA on Gaudi in respective folders.
Following are the contents of README_<Vector_DB>.md
Build Mega Service of ChatQnA (with VectorDB)¶
This document outlines the deployment process for a ChatQnA application utilizing the GenAIComps microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as embedding
, retriever
, rerank
, and llm
.
Quick Start:
1. Set up the environment variables.
2. Run Docker Compose.
3. Consume the ChatQnA Service.
The default pipeline deploys with vLLM as the LLM serving component and leverages the re-rank component.
Note: The default LLM is meta-llama/Meta-Llama-38B-Instruct
. Before deploying the aplication, please make sure either you’ve requested and have been granted access to it on HuggingFace or you’ve downloaded the model locally from ModelScope.
Quick Start: 1. Setup Environment Variable¶
To set up environment variables for deploying ChatQnA services, follow these steps:
Set the required environment variables:¶
# Example: host_ip="192.168.1.1"
export host_ip="External_Public_IP"
export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token"
Set up other environment variables, make sure to update the INDEX_NAME variable to Pinecone index value:¶
source ./set_env.sh
Quick Start: 2.Run Docker Compose¶
docker compose -f compose_<Vector_DB>.yaml up -d
It will automatically download the docker image on docker hub
:
docker pull opea/chatqna:latest
docker pull opea/chatqna-ui:latest
Note: You should build docker image from source by yourself if:
You are developing off the git main branch (as the container’s ports in the repo may be different from the published docker image).
You can’t download the docker image.
You want to use a specific version of Docker image.
QuickStart: 3.Consume the ChatQnA Service¶
curl http://${host_ip}:8888/v1/chatqna \
-H "Content-Type: application/json" \
-d '{
"messages": "What is the revenue of Nike in 2023?"
}'
Build Docker Images¶
First of all, you need to build Docker Images locally and install the python package of it.
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
Build Retriever Image¶
docker build --no-cache -t opea/retriever:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/src/Dockerfile .
Build Dataprep Image¶
docker build --no-cache -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile .
cd ..
Build MegaService Docker Image¶
Option 1. MegaService with Rerank
To construct the Mega Service with Rerank, we utilize the GenAIComps microservice pipeline within the chatqna.py
Python script. Build MegaService Docker image via below command:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
```
Option 2. MegaService without Rerank
To construct the Mega Service without Rerank, we utilize the GenAIComps microservice pipeline within the chatqna_without_rerank.py
Python script. Build MegaService Docker image via below command:
```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA
docker build --no-cache -t opea/chatqna-without-rerank:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.without_rerank .
```
Build UI Docker Image¶
Build frontend Docker image via below command:
cd GenAIExamples/ChatQnA/ui
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
Build Conversational React UI Docker Image (Optional)¶
Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command:
cd GenAIExamples/ChatQnA/ui
docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react .
Build Nginx Docker Image¶
cd GenAIComps
docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile .
Then run the command docker images
, you will have the following 5 Docker Images:
1. `opea/dataprep:latest`
2. `opea/retriever:latest`
3. `opea/chatqna:latest` or `opea/chatqna-without-rerank:latest`
4. `opea/chatqna-ui:latest`
5. `opea/nginx:latest`
Start Microservices¶
Required Models¶
By default, the embedding, reranking and LLM models are set to a default value as listed below:
| Service | Model |
| --------- | ----------------------------------- |
| Embedding | BAAI/bge-base-en-v1.5 |
| Reranking | BAAI/bge-reranker-base |
| LLM | meta-llama/Meta-Llama-3-8B-Instruct |
Change the xxx_MODEL_ID
below for your needs.
For users in China who are unable to download models directly from Huggingface, you can use ModelScope or a Huggingface mirror to download models. The vLLM can load the models either online or offline as described below:
Online
export HF_TOKEN=${your_hf_token} export HF_ENDPOINT="https://hf-mirror.com" model_name="meta-llama/Meta-Llama-3-8B-Instruct" docker run -p 8008:80 -v ./data:/data --name vllm-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 128g opea/vllm:latest --model $model_name --host 0.0.0.0 --port 80
Offline
Search your model name in ModelScope. For example, check this page for model
Meta-Llama-3-8B-Instruct
.Click on
Download this model
button, and choose one way to download the model to your local path/path/to/model
.Run the following command to start the LLM service.
export HF_TOKEN=${your_hf_token} export model_path="/path/to/model" docker run -p 8008:80 -v $model_path:/data --name vllm-service --shm-size 128g opea/vllm:latest --model /data --host 0.0.0.0 --port 80
Setup Environment Variables¶
Set the required environment variables:
# Example: host_ip="192.168.1.1" export host_ip="External_Public_IP" export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token" # Example: NGINX_PORT=80 export NGINX_PORT=${your_nginx_port}
If you are in a proxy environment, also set the proxy-related environment variables:
export http_proxy="Your_HTTP_Proxy" export https_proxy="Your_HTTPs_Proxy" # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" export no_proxy="Your_No_Proxy",chatqna-xeon-ui-server,chatqna-xeon-backend-server,dataprep-pinecone-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service
Set up other environment variables:
source ./set_env.sh
Start all the services¶
Before running the docker compose command, you need to be in the folder that has the docker compose yaml file
```bash
cd GenAIExamples/ChatQnA/docker_compose/intel/cpu/xeon/
```
Start ChatQnA with Rerank Pipeline
```bash
docker compose -f compose_<vectorDB>.yaml up -d
```
Validate Microservices¶
Note, when verify the microservices by curl or API from remote client, please make sure the ports of the microservices are opened in the firewall of the cloud node. Follow the instructions to validate MicroServices.
TEI Embedding Service¶
curl ${host_ip}:6006/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
Retriever Microservice¶
To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector is determined by the embedding model. Here we use the model EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
, which vector size is 768.
Check the vector dimension of your embedding model, set your_embedding
dimension equals to it.
export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://${host_ip}:7000/v1/retrieval \
-X POST \
-d "{\"text\":\"test\",\"embedding\":${your_embedding}}" \
-H 'Content-Type: application/json'
TEI Reranking Service¶
Skip for ChatQnA without Rerank pipeline
curl http://${host_ip}:8808/rerank \
-X POST \
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
-H 'Content-Type: application/json'
LLM backend Service¶
In the first startup, this service will take more time to download, load and warm up the model. After it’s finished, the service will be ready. Try the command below to check whether the LLM serving is ready.
docker logs vllm-service 2>&1 | grep complete
If the service is ready, you will get the response like below.
INFO: Application startup complete.
Then try the cURL
command below to validate services.
curl http://${host_ip}:9009/v1/chat/completions \
-X POST \
-d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}' \
-H 'Content-Type: application/json'
MegaService¶
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
"messages": "What is the revenue of Nike in 2023?"
}'
Nginx Service¶
curl http://${host_ip}:${NGINX_PORT}/v1/chatqna \
-H "Content-Type: application/json" \
-d '{"messages": "What is the revenue of Nike in 2023?"}'
Dataprep Microservice(Optional)¶
If you want to update the default knowledge base, you can use the following commands: Update Knowledge Base via Local File nke-10k-2023.pdf. Or click here to download the file via any web browser Or run this command to get the file on a terminal.
wget https://raw.githubusercontent.com/opea-project/GenAIComps/v1.1/comps/retrievers/redis/data/nke-10k-2023.pdf
Upload:
curl -X POST "http://${host_ip}:6007/v1/dataprep/ingest" \
-H "Content-Type: multipart/form-data" \
-F "files=@./nke-10k-2023.pdf"
This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment. Add Knowledge Base via HTTP Links:
curl -X POST "http://${host_ip}:6007/v1/dataprep/ingest" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev"]'
This command updates a knowledge base by submitting a list of HTTP links for processing. To delete the files/link you uploaded:
curl -X POST "http://${host_ip}:6009/v1/dataprep/delete" \
-d '{"file_path": "all"}' \
-H "Content-Type: application/json"
Tests for ChatQnA with new VectorDB¶
This should go under GenAIExamples/ChatQnA/tests
Test files to create - below examples give a skeleton for test files.
Tests for Xeon¶
test_compose_<Vector_DB>_on_xeon.sh
build_docker_images()
echo "Building Docker Images...."
if [ ! -d "GenAIComps" ] ; then
git clone --single-branch --branch "${opea_branch:-"main"}" https://github.com/opea-project/GenAIComps.git
fi
service_list="dataprep embedding retriever reranking ChatQnA"
docker compose -f build.yaml build ${service_list} --no-cache
docker pull ghcr.io/huggingface/text-embeddings-inference:cpu-1.5
docker pull <Vector_DB> specific images
docker images && sleep 1s
echo "Docker images built!"
start_services()
echo "Starting Docker Services...."
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
export MILVUS_HOST=${ip_address}
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export host_ip=${ip_address}
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
export RERANK_TYPE="tei"
export LOGFLAG=true
# Start Docker Containers
docker compose -f compose_<Vector_DB>.yaml up -d
sleep 2m
echo "Docker services started!"
validate_megaservice()
echo "===========Ingest data=================="
local CONTENT=$(http_proxy="" curl -X POST "http://${ip_address}:6007/v1/dataprep/ingest" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev/"]')
local EXIT_CODE=$(validate "$CONTENT" "Data preparation succeeded" "dataprep-<Vector_DB>-service-xeon")
echo "$EXIT_CODE"
# Curl the Mega Service
echo "================Testing retriever service: Text Request ================"
local CONTENT=$(http_proxy="" curl http://${ip_address}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
"text": "Explain the OPEA project?"
}')
Tests for Gaudi¶
test_compose_<Vector_DB>_on_gaudi.sh
build_docker_images()
echo "Building Docker Images...."
if [ ! -d "GenAIComps" ] ; then
git clone --single-branch --branch "${opea_branch:-"main"}" https://github.com/opea-project/GenAIComps.git
fi
service_list="dataprep embedding retriever reranking ChatQnA"
docker compose -f build.yaml build ${service_list} --no-cache
docker pull ghcr.io/huggingface/text-embeddings-inference:hpu-1.5
docker pull <Vector_DB> specific images
docker images && sleep 1s
echo "Docker images built!"
start_services()
echo "Starting Docker Services...."
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export TEI_EMBEDDING_ENDPOINT="http://${ip_address}:6006"
export TEI_RERANKING_ENDPOINT="http://${ip_address}:8808"
export TGI_LLM_ENDPOINT="http://${ip_address}:8008"
export MILVUS_HOST=${ip_address}
export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export MEGA_SERVICE_HOST_IP=${ip_address}
export EMBEDDING_SERVICE_HOST_IP=${ip_address}
export RETRIEVER_SERVICE_HOST_IP=${ip_address}
export RERANK_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export host_ip=${ip_address}
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep/ingest"
export RERANK_TYPE="tei"
export LOGFLAG=true
# Start Docker Containers
docker compose -f compose_<Vector_DB>.yaml up -d
sleep 2m
echo "Docker services started!"
validate_megaservice()
echo "===========Ingest data=================="
local CONTENT=$(http_proxy="" curl -X POST "http://${ip_address}:6007/v1/dataprep/ingest" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev/"]')
local EXIT_CODE=$(validate "$CONTENT" "Data preparation succeeded" "dataprep-<Vector_DB>-service-gaudi")
echo "$EXIT_CODE"
# Curl the Mega Service
echo "================Testing retriever service: Text Request ================"
local CONTENT=$(http_proxy="" curl http://${ip_address}:8889/v1/retrievaltool -X POST -H "Content-Type: application/json" -d '{
"text": "Explain the OPEA project?"
}')