Reranking Microservice with fastRAG¶
fastRAG
is a research framework for efficient and optimized retrieval augmented generative pipelines, incorporating state-of-the-art LLMs and Information Retrieval.
Please refer to Official fastRAG repo for more information.
This README provides set-up instructions and comprehensive details regarding the reranking microservice via fastRAG.
🚀1. Start Microservice with Python (Option 1)¶
To start the Reranking microservice, you must first install the required python packages.
1.1 Install Requirements¶
pip install -r requirements.txt
1.2 Install fastRAG¶
git clone https://github.com/IntelLabs/fastRAG.git
cd fastRag
pip install .
pip install .[intel]
1.3 Start Reranking Service with Python Script¶
export EMBED_MODEL="Intel/bge-small-en-v1.5-rag-int8-static"
python local_reranking.py
🚀2. Start Microservice with Docker (Option 2)¶
2.1 Setup Environment Variables¶
export EMBED_MODEL="Intel/bge-small-en-v1.5-rag-int8-static"
2.2 Build Docker Image¶
cd ../../../
docker build -t opea/reranking-fastrag:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/fastrag/Dockerfile .
2.3 Run Docker¶
docker run -d --name="reranking-fastrag-server" -p 8000:8000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e EMBED_MODEL=$EMBED_MODEL opea/reranking-fastrag:latest
✅ 3. Invoke Reranking Microservice¶
The Reranking microservice exposes following API endpoints:
Check Service Status
curl http://localhost:8000/v1/health_check \ -X GET \ -H 'Content-Type: application/json'
Execute reranking process by providing query and documents
curl http://localhost:8000/v1/reranking \ -X POST \ -d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \ -H 'Content-Type: application/json'