Dataprep Microservice with Milvus¶
🚀1. Start Microservice with Python (Option 1)¶
1.1 Requirements¶
pip install -r requirements.txt
apt-get install tesseract-ocr -y
apt-get install libtesseract-dev -y
apt-get install poppler-utils -y
1.2 Start Milvus Server¶
Please refer to this readme.
1.3 Setup Environment Variables¶
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export MILVUS_HOST=${your_milvus_host_ip}
export MILVUS_PORT=19530
export COLLECTION_NAME=${your_collection_name}
export TEI_EMBEDDING_ENDPOINT=${your_embedding_endpoint}
1.4 Start TEI Embedding Service¶
First, start the TEI embedding server.
your_port=6010
model="BAAI/bge-base-en-v1.5"
docker run -p $your_port:80 -v ./data:/data --name tei_server -e http_proxy=$http_proxy -e https_proxy=$https_proxy --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.5 --model-id $model
Setup environment variables:
export TEI_EMBEDDING_ENDPOINT="http://localhost:$your_port"
export MILVUS_HOST=${your_host_ip}
1.5 Start Document Preparation Microservice for Milvus with Python Script¶
Start document preparation microservice for Milvus with below command.
python prepare_doc_milvus.py
🚀2. Start Microservice with Docker (Option 2)¶
2.1 Start Milvus Server¶
Please refer to this readme.
2.2 Build Docker Image¶
cd ../../..
# build dataprep milvus docker image
docker build -t opea/dataprep-milvus:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg no_proxy=$no_proxy -f comps/dataprep/milvus/langchain/Dockerfile .
2.3 Setup Environment Variables¶
export TEI_EMBEDDING_ENDPOINT="http://localhost:$your_port"
export MILVUS_HOST=${your_host_ip}
2.3 Run Docker with CLI (Option A)¶
docker run -d --name="dataprep-milvus-server" -p 6010:6010 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e TEI_EMBEDDING_ENDPOINT=${TEI_EMBEDDING_ENDPOINT} -e MILVUS_HOST=${MILVUS_HOST} opea/dataprep-milvus:latest
2.4 Run with Docker Compose (Option B)¶
mkdir model
cd model
git clone https://huggingface.co/BAAI/bge-base-en-v1.5
cd ../
# Update `host_ip` and `HUGGINGFACEHUB_API_TOKEN` in set_env.sh
. set_env.sh
docker compose -f docker-compose-dataprep-milvus.yaml up -d
🚀3. Consume Microservice¶
3.1 Consume Upload API¶
Once document preparation microservice for Milvus is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database.
Make sure the file path after files=@
is correct.
Single file upload
curl -X POST \
-H "Content-Type: multipart/form-data" \
-F "files=@./file.pdf" \
http://localhost:6010/v1/dataprep
You can specify chunk_size and chunk_size by the following commands. To avoid big chunks, pass a small chun_size like 500 as below (default 1500).
curl -X POST \
-H "Content-Type: multipart/form-data" \
-F "files=@./file.pdf" \
-F "chunk_size=500" \
-F "chunk_overlap=100" \
http://localhost:6010/v1/dataprep
Multiple file upload
curl -X POST \
-H "Content-Type: multipart/form-data" \
-F "files=@./file1.pdf" \
-F "files=@./file2.pdf" \
-F "files=@./file3.pdf" \
http://localhost:6010/v1/dataprep
Links upload (not supported for llama_index now)
curl -X POST \
-F 'link_list=["https://www.ces.tech/"]' \
http://localhost:6010/v1/dataprep
or
import requests
import json
proxies = {"http": ""}
url = "http://localhost:6010/v1/dataprep"
urls = [
"https://towardsdatascience.com/no-gpu-no-party-fine-tune-bert-for-sentiment-analysis-with-vertex-ai-custom-jobs-d8fc410e908b?source=rss----7f60cf5620c9---4"
]
payload = {"link_list": json.dumps(urls)}
try:
resp = requests.post(url=url, data=payload, proxies=proxies)
print(resp.text)
resp.raise_for_status() # Raise an exception for unsuccessful HTTP status codes
print("Request successful!")
except requests.exceptions.RequestException as e:
print("An error occurred:", e)
We support table extraction from pdf documents. You can specify process_table and table_strategy by the following commands. “table_strategy” refers to the strategies to understand tables for table retrieval. As the setting progresses from “fast” to “hq” to “llm,” the focus shifts towards deeper table understanding at the expense of processing speed. The default strategy is “fast”.
Note: If you specify “table_strategy=llm”, You should first start TGI Service, please refer to 1.2.1, 1.3.1 in https://github.com/opea-project/GenAIComps/tree/main/comps/llms/README.md, and then export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
.
curl -X POST -H "Content-Type: application/json" -d '{"path":"/home/user/doc/your_document_name","process_table":true,"table_strategy":"hq"}' http://localhost:6010/v1/dataprep
We support table extraction from pdf documents. You can specify process_table and table_strategy by the following commands. “table_strategy” refers to the strategies to understand tables for table retrieval. As the setting progresses from “fast” to “hq” to “llm,” the focus shifts towards deeper table understanding at the expense of processing speed. The default strategy is “fast”.
Note: If you specify “table_strategy=llm”, You should first start TGI Service, please refer to 1.2.1, 1.3.1 in https://github.com/opea-project/GenAIComps/tree/main/comps/llms/README.md, and then export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
.
curl -X POST -H "Content-Type: application/json" -d '{"path":"/home/user/doc/your_document_name","process_table":true,"table_strategy":"hq"}' http://localhost:6010/v1/dataprep
3.2 Consume get_file API¶
To get uploaded file structures, use the following command:
curl -X POST \
-H "Content-Type: application/json" \
http://localhost:6010/v1/dataprep/get_file
Then you will get the response JSON like this:
[
{
"name": "uploaded_file_1.txt",
"id": "uploaded_file_1.txt",
"type": "File",
"parent": ""
},
{
"name": "uploaded_file_2.txt",
"id": "uploaded_file_2.txt",
"type": "File",
"parent": ""
}
]
3.3 Consume delete_file API¶
To delete uploaded file/link, use the following command.
The file_path
here should be the id
get from /v1/dataprep/get_file
API.
# delete link
curl -X POST \
-H "Content-Type: application/json" \
-d '{"file_path": "https://www.ces.tech/.txt"}' \
http://localhost:6010/v1/dataprep/delete_file
# delete file
curl -X POST \
-H "Content-Type: application/json" \
-d '{"file_path": "uploaded_file_1.txt"}' \
http://localhost:6010/v1/dataprep/delete_file
# delete all files and links, will drop the entire db collection
curl -X POST \
-H "Content-Type: application/json" \
-d '{"file_path": "all"}' \
http://localhost:6010/v1/dataprep/delete_file
🚀4. Troubleshooting¶
If you get errors from TEI Embedding Endpoint like
cannot find this task, maybe it has expired
while uploading files, try to reduce thechunk_size
in the curl command like below (the default chunk_size=1500).curl -X POST \ -H "Content-Type: multipart/form-data" \ -F "files=@./file.pdf" \ -F "chunk_size=500" \ http://localhost:6010/v1/dataprep