Intent Detection Microservice by TGI¶
🚀1. Start Microservice with Python(Option 1)¶
1.1 Install Requirements¶
pip install -r requirements.txt
1.2 Start TGI Service¶
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
docker run -p 8008:80 -v ./data:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:1.4 --model-id ${your_hf_llm_model}
1.3 Verify the TGI Service¶
curl http://${your_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
1.4 Setup Environment Variables¶
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
1.5 Start Intent Detection Microservice with Python Script¶
Start intent detection microservice with below command.
cd ../../../
cp comps/intent_detection/langchain/intent_detection.py .
python intent_detection.py
🚀2. Start Microservice with Docker (Option 2)¶
2.1 Start TGI Service¶
Please refer to 1.2.
2.2 Setup Environment Variables¶
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
2.3 Build Docker Image¶
cd ../../../
docker build --no-cache -t opea/intent-detection-tgi:latest -f comps/intent_detection/langchain/Dockerfile .
2.4 Run Docker with CLI (Option A)¶
docker run -it --name="intent-tgi-server" --net=host --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e TGI_LLM_ENDPOINT=$TGI_LLM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/intent-detection-tgi:latest
2.5 Run with Docker Compose (Option B)¶
export LLM_MODEL_ID=${your_hf_llm_model}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export TGI_LLM_ENDPOINT="http://tgi-service:80"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
docker compose -f docker_compose_intent.yaml up -d
🚀3. Consume Microservice¶
Once intent detection microservice is started, user can use below command to invoke the microservice.
curl http://${your_ip}:9000/v1/chat/intent\
-X POST \
-d '{"query":"What is Deep Learning?","max_new_tokens":10,"top_k":1,"temperature":0.001,"stream":false}' \
-H 'Content-Type: application/json'