Document Summary TGI Microservice¶
This microservice leverages LangChain to implement summarization strategies and facilitate LLM inference using Text Generation Inference on Intel Xeon and Gaudi2 processors. Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and more.
🚀1. Start Microservice with Python 🐍 (Option 1)¶
To start the LLM microservice, you need to install python packages first.
1.1 Install Requirements¶
pip install -r requirements.txt
1.2 Start LLM Service¶
export HF_TOKEN=${your_hf_api_token}
docker run -p 8008:80 -v ./data:/data --name llm-docsum-tgi --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id ${your_hf_llm_model}
1.3 Verify the TGI Service¶
curl http://${your_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
1.4 Start LLM Service with Python Script¶
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
python llm.py
🚀2. Start Microservice with Docker 🐳 (Option 2)¶
If you start an LLM microservice with docker, the docker_compose_llm.yaml
file will automatically start a TGI/vLLM service with docker.
2.1 Setup Environment Variables¶
In order to start TGI and LLM services, you need to setup the following environment variables first.
export HF_TOKEN=${your_hf_api_token}
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
2.2 Build Docker Image¶
cd ../../../../../
docker build -t opea/llm-docsum-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/tgi/langchain/Dockerfile .
To start a docker container, you have two options:
A. Run Docker with CLI
B. Run Docker with Docker Compose
You can choose one as needed.
2.3 Run Docker with CLI (Option A)¶
docker run -d --name="llm-docsum-tgi-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e TGI_LLM_ENDPOINT=$TGI_LLM_ENDPOINT -e HF_TOKEN=$HF_TOKEN opea/llm-docsum-tgi:latest
2.4 Run Docker with Docker Compose (Option B)¶
docker compose -f docker_compose_llm.yaml up -d
🚀3. Consume LLM Service¶
3.1 Check Service Status¶
curl http://${your_ip}:9000/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
3.2 Consume LLM Service¶
# Enable streaming to receive a streaming response. By default, this is set to True.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
-H 'Content-Type: application/json'
# Disable streaming to receive a non-streaming response.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "streaming":false}' \
-H 'Content-Type: application/json'