FaqGen Accuracy

Dataset

We evaluate performance on QA dataset Squad_v2. Generate FAQs on “context” columns in validation dataset, which contains 1204 unique records.

First download dataset and put at “./data”.

Extract unique “context” columns, which will be save to ‘data/sqv2_context.json’:

python get_context.py

Generate FAQs

Launch FaQGen microservice

Please refer to FaQGen microservice, set up an microservice endpoint.

export FAQ_ENDPOINT = "http://${your_ip}:9000/v1/faqgen"

Generate FAQs with microservice

Use the microservice endpoint to generate FAQs for dataset.

python generate_FAQ.py

Post-process the output to get the right data, which will be save to ‘data/sqv2_faq.json’.

python post_process_FAQ.py

Evaluate with Ragas

Launch TGI service

We use “mistralai/Mixtral-8x7B-Instruct-v0.1” as LLM referee to evaluate the model. First we need to launch a LLM endpoint on Gaudi.

export HUGGING_FACE_HUB_TOKEN="your_huggingface_token"
bash launch_tgi.sh

Get the endpoint:

export LLM_ENDPOINT = "http://${ip_address}:8082"

Verify the service:

curl http://${ip_address}:8082/generate \
    -X POST \
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":128}}' \
    -H 'Content-Type: application/json'

Evaluate

evaluate the performance with the LLM:

python evaluate.py

Performance Result

Here is the tested result for your reference

answer_relevancy

faithfulness

context_utilization

reference_free_rubrics_score

0.7191

0.9681

0.8964

4.4125