Document Summary vLLM Microservice¶
This microservice leverages LangChain to implement summarization strategies and facilitate LLM inference using vLLM. vLLM is a fast and easy-to-use library for LLM inference and serving, it delivers state-of-the-art serving throughput with a set of advanced features such as PagedAttention, Continuous batching and etc.. Besides GPUs, vLLM already supported Intel CPUs and Gaudi accelerators.
🚀1. Start Microservice with Python 🐍 (Option 1)¶
To start the LLM microservice, you need to install python packages first.
1.1 Install Requirements¶
pip install -r requirements.txt
1.2 Start LLM Service¶
export HF_TOKEN=${your_hf_api_token}
export LLM_MODEL_ID=${your_hf_llm_model}
docker run -p 8008:80 -v ./data:/data --name llm-docsum-vllm --shm-size 1g opea/vllm:hpu --model-id ${LLM_MODEL_ID}
1.3 Verify the vLLM Service¶
curl http://${your_ip}:8008/v1/chat/completions \
-X POST \
-H "Content-Type: application/json" \
-d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning? "}]}'
1.4 Start LLM Service with Python Script¶
export vLLM_ENDPOINT="http://${your_ip}:8008"
python llm.py
🚀2. Start Microservice with Docker 🐳 (Option 2)¶
If you start an LLM microservice with docker, the docker_compose_llm.yaml
file will automatically start a vLLM/vLLM service with docker.
To setup or build the vLLM image follow the instructions provided in vLLM Gaudi
2.1 Setup Environment Variables¶
In order to start vLLM and LLM services, you need to setup the following environment variables first.
export HF_TOKEN=${your_hf_api_token}
export vLLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
2.2 Build Docker Image¶
cd ../../../../../
docker build -t opea/llm-docsum-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/vllm/langchain/Dockerfile .
To start a docker container, you have two options:
A. Run Docker with CLI
B. Run Docker with Docker Compose
You can choose one as needed.
2.3 Run Docker with CLI (Option A)¶
docker run -d --name="llm-docsum-vllm-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e vLLM_ENDPOINT=$vLLM_ENDPOINT -e HF_TOKEN=$HF_TOKEN opea/llm-docsum-vllm:latest
2.4 Run Docker with Docker Compose (Option B)¶
docker compose -f docker_compose_llm.yaml up -d
🚀3. Consume LLM Service¶
3.1 Check Service Status¶
curl http://${your_ip}:9000/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
3.2 Consume LLM Service¶
# Enable streaming to receive a streaming response. By default, this is set to True.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en"}' \
-H 'Content-Type: application/json'
# Disable streaming to receive a non-streaming response.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en", "streaming":false}' \
-H 'Content-Type: application/json'
# Use Chinese mode. By default, language is set to "en"
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"2024年9月26日,北京——今日,英特尔正式发布英特尔® 至强® 6性能核处理器(代号Granite Rapids),为AI、数据分析、科学计算等计算密集型业务提供卓越性能。", "max_tokens":32, "language":"zh", "streaming":false}' \
-H 'Content-Type: application/json'