Prediction Guard Introduction¶
Prediction Guard allows you to utilize hosted open access LLMs, LVMs, and embedding functionality with seamlessly integrated safeguards. In addition to providing a scalable access to open models, Prediction Guard allows you to configure factual consistency checks, toxicity filters, PII filters, and prompt injection blocking. Join the Prediction Guard Discord channel and request an API key to get started.
Get Started¶
Build Docker Image¶
cd ../../..
docker build -t opea/llm-textgen-predictionguard:latest -f comps/llms/text-generation/predictionguard/Dockerfile .
Run the Predictionguard Microservice¶
docker run -d -p 9000:9000 -e PREDICTIONGUARD_API_KEY=$PREDICTIONGUARD_API_KEY --name llm-textgen-predictionguard opea/llm-textgen-predictionguard:latest
Consume the Prediction Guard Microservice¶
See the Prediction Guard docs for available model options.
Without streaming¶
curl -X POST http://localhost:9000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Hermes-2-Pro-Llama-3-8B",
"query": "Tell me a joke.",
"max_tokens": 100,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 50,
"stream": false
}'
With streaming¶
curl -N -X POST http://localhost:9000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Hermes-2-Pro-Llama-3-8B",
"query": "Tell me a joke.",
"max_tokens": 100,
"temperature": 0.7,
"top_p": 0.9,
"top_k": 50,
"stream": true
}'