LLM Microservice¶
This microservice, designed for Language Model Inference (LLM), processes input consisting of a query string and associated reranked documents. It constructs a prompt based on the query and documents, which is then used to perform inference with a large language model. The service delivers the inference results as output.
A prerequisite for using this microservice is that users must have a LLM text generation service (etc., TGI, vLLM and Ray) already running. Users need to set the LLM service’s endpoint into an environment variable. The microservice utilizes this endpoint to create an LLM object, enabling it to communicate with the LLM service for executing language model operations.
Overall, this microservice offers a streamlined way to integrate large language model inference into applications, requiring minimal setup from the user beyond initiating a TGI/vLLM/Ray service and configuring the necessary environment variables. This allows for the seamless processing of queries and documents to generate intelligent, context-aware responses.
Validated LLM Models¶
Model |
TGI-Gaudi |
vLLM-CPU |
vLLM-Gaudi |
Ray |
---|---|---|---|---|
✓ |
✓ |
✓ |
✓ |
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
- |
✓ |
x |
|
✓ |
✓ |
✓ |
✓ |
|
✓ |
- |
✓ |
x |
|
x |
Limit 4K |
Limit 4K |
✓ |
Clone OPEA GenAIComps¶
Clone this repository at your desired location and set an environment variable for easy setup and usage throughout the instructions.
git clone https://github.com/opea-project/GenAIComps.git
export OPEA_GENAICOMPS_ROOT=$(pwd)/GenAIComps
🚀1. Start Microservice with Python (Option 1)¶
To start the LLM microservice, you need to install python packages first.
1.1 Install Requirements¶
pip install opea-comps
pip install -r ${OPEA_GENAICOMPS_ROOT}/comps/llms/requirements.txt
# Install requirements of your choice of microservice in the text-generation folder (tgi, vllm, vllm-ray, etc.)
export MICROSERVICE_DIR=your_chosen_microservice
pip install -r ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/${MICROSERVICE_DIR}/requirements.txt
Set an environment variable your_ip
to the IP address of the machine where you would like to consume the microservice.
# For example, this command would set the IP address of your currently logged-in machine.
export your_ip=$(hostname -I | awk '{print $1}')
1.2 Start LLM Service with Python Script¶
1.2.1 Start the TGI Service¶
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
python ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/tgi/llm.py
python ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/tgi/llm.py
1.2.2 Start the vLLM Service¶
export vLLM_LLM_ENDPOINT="http://${your_ip}:8008"
python ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/llm.py
python ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/llm.py
1.2.3 Start the Ray Service¶
export RAY_Serve_ENDPOINT="http://${your_ip}:8008"
python ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/ray_serve/llm.py
python ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/ray_serve/llm.py
🚀2. Start Microservice with Docker (Option 2)¶
You can use either a published docker image or build your own docker image with the respective microservice Dockerfile of your choice. You must create a user account with HuggingFace and obtain permission to use the restricted LLM models by adhering to the guidelines provided on the respective model’s webpage.
2.1 Start LLM Service with published image¶
2.1.1 Start TGI Service¶
export HF_LLM_MODEL=${your_hf_llm_model}
export HF_TOKEN=${your_hf_api_token}
docker run \
-p 8008:80 \
-e HF_TOKEN=${HF_TOKEN} \
-v ./data:/data \
--name tgi_service \
--shm-size 1g \
ghcr.io/huggingface/text-generation-inference:1.4 \
--model-id ${HF_LLM_MODEL}
2.1.2 Start vLLM Service¶
# Use the script to build the docker image as opea/vllm:cpu
bash ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/build_docker_vllm.sh cpu
export HF_LLM_MODEL=${your_hf_llm_model}
export HF_TOKEN=${your_hf_api_token}
docker run -it \
--name vllm_service \
-p 8008:80 \
-e HF_TOKEN=${HF_TOKEN} \
-e VLLM_CPU_KVCACHE_SPACE=40 \
-v ./data:/data \
opea/vllm:cpu \
--model ${HF_LLM_MODEL}
--port 80
2.1.3 Start Ray Service¶
export HF_LLM_MODEL=${your_hf_llm_model}
export HF_CHAT_PROCESSOR=${your_hf_chatprocessor}
export HF_TOKEN=${your_hf_api_token}
export TRUST_REMOTE_CODE=True
docker run -it \
--runtime=habana \
--name ray_serve_service \
-e OMPI_MCA_btl_vader_single_copy_mechanism=none \
--cap-add=sys_nice \
--ipc=host \
-p 8008:80 \
-e HF_TOKEN=$HF_TOKEN \
-e TRUST_REMOTE_CODE=$TRUST_REMOTE_CODE \
opea/llm-ray:latest \
/bin/bash -c " \
ray start --head && \
python api_server_openai.py \
--port_number 80 \
--model_id_or_path ${HF_LLM_MODEL} \
--chat_processor ${HF_CHAT_PROCESSOR}"
2.2 Start LLM Service with image built from source¶
If you start an LLM microservice with docker, the docker_compose_llm.yaml
file will automatically start a TGI/vLLM service with docker.
2.2.1 Setup Environment Variables¶
In order to start TGI and LLM services, you need to setup the following environment variables first.
export HF_TOKEN=${your_hf_api_token}
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
In order to start vLLM and LLM services, you need to setup the following environment variables first.
export HF_TOKEN=${your_hf_api_token}
export vLLM_LLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
In order to start Ray serve and LLM services, you need to setup the following environment variables first.
export HF_TOKEN=${your_hf_api_token}
export RAY_Serve_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL=${your_hf_llm_model}
export CHAT_PROCESSOR="ChatModelLlama"
2.2 Build Docker Image¶
2.2.1 TGI¶
cd ${OPEA_GENAICOMPS_ROOT}
docker build \
-t opea/llm-tgi:latest \
--build-arg https_proxy=$https_proxy \
--build-arg http_proxy=$http_proxy \
-f comps/llms/text-generation/tgi/Dockerfile .
2.2.2 vLLM¶
Build vllm docker.
bash ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/langchain/dependency/build_docker_vllm.sh
Build microservice docker.
cd ${OPEA_GENAICOMPS_ROOT}
docker build \
-t opea/llm-vllm:latest \
--build-arg https_proxy=$https_proxy \
--build-arg http_proxy=$http_proxy \
-f comps/llms/text-generation/vllm/langchain/Dockerfile .
2.2.3 Ray Serve¶
Build Ray Serve docker.
bash ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/ray/dependency/build_docker_vllmray.sh
Build microservice docker.
cd ${OPEA_GENAICOMPS_ROOT}
docker build \
-t opea/llm-ray:latest \
--build-arg https_proxy=$https_proxy \
--build-arg http_proxy=$http_proxy \
-f comps/llms/text-generation/vllm/ray/Dockerfile .
To start a docker container, you have two options:
A. Run Docker with CLI
B. Run Docker with Docker Compose
You can choose one as needed.
2.3 Run Docker with CLI (Option A)¶
2.3.1 TGI¶
docker run -d \
--name="llm-tgi-server" \
-p 9000:9000 \
--ipc=host \
-e http_proxy=$http_proxy \
-e https_proxy=$https_proxy \
-e TGI_LLM_ENDPOINT=$TGI_LLM_ENDPOINT \
-e HF_TOKEN=$HF_TOKEN \
opea/llm-tgi:latest
2.3.2 vLLM¶
Start vllm endpoint.
bash ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/langchain/dependency/launch_vllm_service.sh
Start vllm microservice.
docker run \
--name="llm-vllm-server" \
-p 9000:9000 \
--ipc=host \
-e http_proxy=$http_proxy \
-e https_proxy=$https_proxy \
-e no_proxy=${no_proxy} \
-e vLLM_LLM_ENDPOINT=$vLLM_LLM_ENDPOINT \
-e HF_TOKEN=$HF_TOKEN \
-e LLM_MODEL_ID=$LLM_MODEL_ID \
opea/llm-vllm:latest
2.3.3 Ray Serve¶
Start Ray Serve endpoint.
bash ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/ray/dependency/launch_vllmray.sh
Start Ray Serve microservice.
docker run -d \
--name="llm-ray-server" \
-p 9000:9000 \
--ipc=host \
-e http_proxy=$http_proxy \
-e https_proxy=$https_proxy \
-e RAY_Serve_ENDPOINT=$RAY_Serve_ENDPOINT \
-e HF_TOKEN=$HF_TOKEN \
-e LLM_MODEL=$LLM_MODEL \
opea/llm-ray:latest
2.4 Run Docker with Docker Compose (Option B)¶
2.4.1 TGI¶
cd ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/tgi
docker compose -f docker_compose_llm.yaml up -d
2.4.2 vLLM¶
cd ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/langchain
docker compose -f docker_compose_llm.yaml up -d
2.4.3 Ray Serve¶
cd ${OPEA_GENAICOMPS_ROOT}/comps/llms/text-generation/vllm/ray
docker compose -f docker_compose_llm.yaml up -d
🚀3. Consume LLM Service¶
3.1 Check Service Status¶
curl http://${your_ip}:9000/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
3.2 Verify the LLM Service¶
3.2.1 Verify the TGI Service¶
curl http://${your_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
-H 'Content-Type: application/json'
3.2.2 Verify the vLLM Service¶
curl http://${your_ip}:8008/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": ${your_hf_llm_model},
"prompt": "What is Deep Learning?",
"max_tokens": 32,
"temperature": 0
}'
3.2.3 Verify the Ray Service¶
curl http://${your_ip}:8008/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": ${your_hf_llm_model},
"messages": [
{"role": "assistant", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is Deep Learning?"},
],
"max_tokens": 32,
"stream": True
}'
3.3 Consume LLM Service¶
You can set the following model parameters according to your actual needs, such as max_tokens
, streaming
.
The streaming
parameter determines the format of the data returned by the API. It will return text string with streaming=false
, return text streaming flow with streaming=true
.
# non-streaming mode
curl http://${your_ip}:9000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"query":"What is Deep Learning?",
"max_tokens":17,
"top_k":10,
"top_p":0.95,
"typical_p":0.95,
"temperature":0.01,
"repetition_penalty":1.03,
"streaming":false
}'
# streaming mode
curl http://${your_ip}:9000/v1/chat/completions \
-X POST \
-H 'Content-Type: application/json' \
-d '{
"query":"What is Deep Learning?",
"max_tokens":17,
"top_k":10,
"top_p":0.95,
"typical_p":0.95,
"temperature":0.01,
"repetition_penalty":1.03,
"streaming":true
}'