LVM Prediction Guard Microservice

Prediction Guard allows you to utilize hosted open access LLMs, LVMs, and embedding functionality with seamlessly integrated safeguards. In addition to providing a scalable access to open models, Prediction Guard allows you to configure factual consistency checks, toxicity filters, PII filters, and prompt injection blocking. Join the Prediction Guard Discord channel and request an API key to get started.

Visual Question and Answering is one of the multimodal tasks empowered by LVMs (Large Visual Models). This microservice supports visual Q&A by using a LLaVA model available via the Prediction Guard API. It accepts two inputs: a prompt and an image. It outputs the answer to the prompt about the image.

🚀1. Start Microservice with Python

1.1 Install Requirements

pip install -r requirements.txt

1.2 Start LVM Service

python lvm.py

🚀2. Start Microservice with Docker (Option 2)

2.1 Setup Environment Variables

Setup the following environment variables first

export PREDICTIONGUARD_API_KEY=${your_predictionguard_api_key}

2.1 Build Docker Images

cd ../../..
docker build -t opea/lvm-predictionguard:latest -f comps/lvms/src/integrations/dependency/predictionguard/Dockerfile .

2.2 Start Service

docker run -d --name="lvm-predictionguard" -p 9399:9399 -e PREDICTIONGUARD_API_KEY=$PREDICTIONGUARD_API_KEY opea/lvm-predictionguard:latest

🚀3. Consume LVM Service

curl -X POST http://localhost:9399/v1/lvm \
    -H 'Content-Type: application/json' \
    -d '{
      "image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC",
      "prompt": "What is this?",
      "max_new_tokens": 30
    }'