Intent Detection Microservice by TGI

🚀1. Start Microservice with Python(Option 1)

1.1 Install Requirements

pip install -r requirements.txt

1.2 Start TGI Service

export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
docker run -p 8008:80 -v ./data:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:1.4 --model-id ${your_hf_llm_model}

1.3 Verify the TGI Service

curl http://${your_ip}:8008/generate \
  -X POST \
  -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
  -H 'Content-Type: application/json'

1.4 Setup Environment Variables

export TGI_LLM_ENDPOINT="http://${your_ip}:8008"

1.5 Start Intent Detection Microservice with Python Script

Start intent detection microservice with below command.

cd ../../../
cp comps/intent_detection/langchain/intent_detection.py .
python intent_detection.py

🚀2. Start Microservice with Docker (Option 2)

2.1 Start TGI Service

Please refer to 1.2.

2.2 Setup Environment Variables

export TGI_LLM_ENDPOINT="http://${your_ip}:8008"

2.3 Build Docker Image

cd ../../../
docker build --no-cache -t opea/llm-tgi:latest -f comps/intent_detection/langchain/Dockerfile .

2.4 Run Docker with CLI (Option A)

docker run -it --name="intent-tgi-server" --net=host --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e TGI_LLM_ENDPOINT=$TGI_LLM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN opea/llm-tgi:latest

2.5 Run with Docker Compose (Option B)

export LLM_MODEL_ID=${your_hf_llm_model}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export TGI_LLM_ENDPOINT="http://tgi-service:80"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
docker compose -f docker_compose_intent.yaml up -d

🚀3. Consume Microservice

Once intent detection microservice is started, user can use below command to invoke the microservice.

curl http://${your_ip}:9000/v1/chat/intent\
  -X POST \
  -d '{"query":"What is Deep Learning?","max_new_tokens":10,"top_k":1,"temperature":0.001,"streaming":false}' \
  -H 'Content-Type: application/json'