# OPEA Release Notes v1.4 We are excited to announce the release of OPEA version 1.4, which includes significant contributions from the open-source community. This release addresses over 330 pull requests. More information about how to get started with OPEA v1.4 can be found on the [Getting Started](https://opea-project.github.io/latest/index.html) page. All project source code is maintained in the [opea-project organization](https://github.com/opea-project). To pull Docker images, please access the [Docker Hub](https://hub.docker.com/u/opea). For instructions on deploying Helm Charts, please refer to the [guide](https://github.com/opea-project/GenAIInfra/tree/v1.4/helm-charts#readme). ## Table of Contents - [OPEA Release Notes v1.4](#opea-release-notes-v14) - [Table of Contents](#table-of-contents) - [What's New in OPEA v1.4](#whats-new-in-opea-v14) - [Advanced Agent Capabilities](#advanced-agent-capabilities) - [Components as MCP Servers](#components-as-mcp-servers) - [KubeAI Operator for OPEA](#kubeai-operator-for-opea) - [New GenAI Capabilities](#new-genai-capabilities) - [Better User Experience](#better-user-experience) - [Newly Supported Models](#newly-supported-models) - [Newly Supported Hardware](#newly-supported-hardware) - [Newly Supported OS](#newly-supported-os) - [Updated Dependencies](#updated-dependencies) - [Changes to Default Behavior](#changes-to-default-behavior) - [Validated Hardware](#validated-hardware) - [Validated Software](#validated-software) - [Known Issues](#known-issues) - [Full Changelogs](#full-changelogs) - [Contributors](#contributors) - [Contributing Organizations](#contributing-organizations) - [Individual Contributors](#individual-contributors) ## What's New in OPEA v1.4 This release includes new features, optimizations, and user-focused updates. ### Advanced Agent Capabilities - MCP (Model Context Protocol) Support: The OPEA agent now supports the MCP, allowing for standardized and more efficient integration with external data and services. ([GenAIComps#1678](https://github.com/opea-project/GenAIComps/pull/1678), [GenAIComps#](https://github.com/opea-project/GenAIComps/pull/1810)) - Deep Research Agent: The [example](https://github.com/opea-project/GenAIExamples/tree/v1.4/DeepResearchAgent) is designed to handle complex, multi-step research. It leverages [langchain-ai/open_deep_research](https://github.com/langchain-ai/open_deep_research) and supports Intel Gaudi accelerators. ([GenAIExamples#](https://github.com/opea-project/GenAIExamples/pull/2117)) ### Components as MCP Servers OPEA components can now serve as Model Context Protocol (MCP) servers, allowing external MCP-compatible frameworks and applications to integrate with OPEA seamlessly. ([GenAIComps#1652](https://github.com/opea-project/GenAIComps/issues/1652)) ### KubeAI Operator for OPEA The KubeAI Operator now features an improved autoscaler, monitoring support, optimized resource placement via [NRI plugins](https://github.com/containers/nri-plugins), and expanded support for new models on Gaudi. ([GenAIInfra#](https://github.com/opea-project/GenAIInfra/pull/967), [GenAIInfra#](https://github.com/opea-project/GenAIInfra/pull/1052), [GenAIInfra#](https://github.com/opea-project/GenAIInfra/pull/1054), [GenAIInfra#](https://github.com/opea-project/GenAIInfra/pull/1089), [GenAIInfra#](https://github.com/opea-project/GenAIInfra/pull/1113), [GenAIInfra#](https://github.com/opea-project/GenAIInfra/pull/1144), [GenAIInfra#](https://github.com/opea-project/GenAIInfra/pull/1150)) ### New GenAI Capabilities - Fine-Tuning of Reasoning Models: This feature is compatible with the dataset format used in [FreedomIntelligence/medical-o1-reasoning-SFT](https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT), enabling you to customize models with your own data. ([GenAIComps#](https://github.com/opea-project/GenAIComps/pull/1839)) - HybridRAG: Combined GraphRAG (knowledge graph-based retrieval) and VectorRAG (vector database retrieval) for enhanced accuracy and contextual relevance. ([GenAIExamples#1968](https://github.com/opea-project/GenAIExamples/pull/1968)) - LLM Router: LLM Router decides which downstream LLM serving endpoint is best suited for an incoming prompt. ([GenAIComps#1716](https://github.com/opea-project/GenAIComps/pull/1716)) - OPEA Store: Redis and MongoDB have been integrated into OPEA Store. ([GenAIComps#1816](https://github.com/opea-project/GenAIComps/pull/1816), [GenAIComps#](https://github.com/opea-project/GenAIComps/pull/1818)) - Guardrails: Added Input/Output Guardrails to enforce content safety and prevent the creation of inappropriate outputs. ([GenAIComps#1798](https://github.com/opea-project/GenAIComps/pull/1798)) - Language Detection: The microservice is used to ensure the pipeline's response matches the query's language. ([GenAIComps#1774](https://github.com/opea-project/GenAIComps/pull/1774)) - Prompt Template: The microservice can dynamically generate system and user prompts based on structured inputs and document context. ([GenAIComps#1826](https://github.com/opea-project/GenAIComps/pull/1826)) - Air-gapped Environment Support: Some OPEA microservices can now be deployed in an air-gapped Docker environment. ([GenAIComps#1480](https://github.com/opea-project/GenAIComps/issues/1480)) - Remote Inference Endpoints Support: Added support for remote inference endpoints for OPEA examples. ([GenAIExamples#1973](https://github.com/opea-project/GenAIExamples/issues/1973)) ### Better User Experience - One-click Deployment: You can now deploy 8 OPEA examples with one click. ChatQnA can deploy in an air-gapped Docker environment. ([GenAIExamples#1727](https://github.com/opea-project/GenAIExamples/issues/1727)) - GenAIStudio: Added support for drag-and-drop creation of documentation summarization and code generation applications. ([GenAIStudio#61](https://github.com/opea-project/GenAIStudio/pull/61)) - Documentation Refinement: Refined READMEs for key examples and components to help readers easily locate documentation tailored to deployment, customization, and hardware. ([GenAIExamples#1673](https://github.com/opea-project/GenAIExamples/issues/1673), [GenAIComps#](https://github.com/opea-project/GenAIComps/issues/1398)) ### Newly Supported Models OPEA introduces support for the following models in this release. | Model | TGI-Gaudi | vLLM-CPU | vLLM-Gaudi | vLLM-ROCm | OVMS | Optimum-Habana | PredictionGuard | SGLANG-CPU | | --------------------------------------------- | --------- | -------- | ---------- | --------- | -------- | -------------- | --------------- | ------------- | | meta-llama/Llama-4-Scout-17B-16E-Instruct | - | - | - | - | - | - | - | ✓ | | meta-llama/Llama-4-Maverick-17B-128E-Instruct | - | - | - | - | - | - | - | ✓ | (✓: supported; -: not validated; x: unsupported) ### Newly Supported Hardware - Support for AMD® EPYC™ has been added for 11 OPEA examples. ([GenAIExamples#2083](https://github.com/opea-project/GenAIExamples/pull/2083)) ### Newly Supported OS - Support for openEuler has been added. ([GenAIExamples#2088](https://github.com/opea-project/GenAIExamples/pull/2088), [GenAIComps#](https://github.com/opea-project/GenAIComps/pull/1813)) ## Updated Dependencies | Dependency | Hardware | Scope | Version | Version in OPEA v1.3 | Comments | |--|--|--|--|--|--| |huggingface/text-embeddings-inference|all|all supported examples|cpu-1.7|cpu-1.6|| |vllm|Xeon|all supported examples except EdgeCraftRAG|v0.10.0|v0.8.3|| ## Changes to Default Behavior - `CodeTrans`: The default model changed from `mistralai/Mistral-7B-Instruct-v0.3` to `Qwen/Qwen2.5-Coder-7B-Instruct` on Xeon and Gaudi. ## Validated Hardware - Intel® Gaudi® AI Accelerators (2nd) - Intel® Xeon® Scalable processor (3rd) - Intel® Arc™ Graphics GPU (A770) - AMD® EPYC™ processors (4th, 5th) ## Validated Software - Docker version 28.3.3 - Docker Compose version v2.39.1 - Intel® Gaudi® software and drivers [v1.21](https://docs.habana.ai/en/v1.21.3/Installation_Guide/) - Kubernetes v1.32.7 - TEI v1.7 - TGI v2.4.0 (Xeon, EPYC), v2.3.1 (Gaudi), v2.4.1 (ROCm) - Torch v2.5.1 - Ubuntu 22.04 - vLLM v0.10.0 (Xeon, EPYC), v0.6.6.post1+Gaudi-1.20.0 (Gaudi) ## Known Issues - [AvatarChatbot](https://github.com/opea-project/GenAIExamples/tree/v1.4/AvatarChatbot) cannot run in a K8s environment due to a functional gap in the wav2clip service. ([GenAIExamples#](https://github.com/opea-project/GenAIExamples/pull/1506)) ## Full Changelogs - GenAIExamples: [v1.3...v1.4](https://github.com/opea-project/GenAIExamples/compare/v1.3...v1.4) - GenAIComps: [v1.3...v1.4](https://github.com/opea-project/GenAIComps/compare/v1.3...v1.4) - GenAIInfra: [v1.3...v1.4](https://github.com/opea-project/GenAIInfra/compare/v1.3...v1.4) - GenAIEval: [v1.3...v1.4](https://github.com/opea-project/GenAIEval/compare/v1.3...v1.4) - GenAIStudio: [v1.3...v1.4](https://github.com/opea-project/GenAIStudio/compare/v1.3...v1.4) - docs: [v1.3...v1.4](https://github.com/opea-project/docs/compare/v1.3...v1.4) ## Contributors This release would not have been possible without the contributions of the following organizations and individuals. ### Contributing Organizations - `AMD`: AMD EPYC support. - `Bud`: Components as MCP Servers. - `Intel`: Development and improvements to GenAI examples, components, infrastructure, evaluation, and studio. - `MariaDB`: Added ChatQnA docker-compose example on Intel Xeon using MariaDB Vector. - `openEuler`: openEuler OS support. ### Individual Contributors For a comprehensive list of individual contributors, please refer to the [Full Changelogs](#full-changelogs) section.