# OPEA lvm-serve microservice Helm chart for deploying OPEA large vision model service. ## Installing the Chart To install the chart, run the following: ```console cd GenAIInfra/helm-charts/common export MODELDIR=/mnt/opea-models export HFTOKEN="insert-your-huggingface-token-here" export LVM_MODEL_ID="llava-hf/llava-1.5-7b-hf" # To deploy lvm-llava microserice on CPU helm install lvm-serve lvm-serve --set global.modelUseHostPath=${MODELDIR} --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set LVM_MODEL_ID=${LVM_MODEL_ID} # To deploy lvm-llava microserice on Gaudi # helm install lvm-serve lvm-serve --set global.modelUseHostPath=${MODELDIR} --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set LVM_MODEL_ID=${LVM_MODEL_ID} --values lvm-serve/gaudi-values.yaml # To deploy lvm-video-llama microserice on CPU helm install lvm-serve lvm-serve --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --values lvm-serve/variant_video-llama-values.yaml ``` By default, the lvm-serve-llava service will downloading the model "llava-hf/llava-1.5-7b-hf" which is about 14GB. If you already cached the model locally, you can pass it to container like this example: MODELDIR=/mnt/opea-models MODELNAME="/data/models--llava-hf--llava-1.5-7b-hf" ## Verify To verify the installation, run the command `kubectl get pod` to make sure all pods are runinng and in ready state. Then run the command `kubectl port-forward svc/lvm-serve 9399:9399` to expose the lvm-serve service for access. Open another terminal and run the following command to verify the service if working: ```console # Verify with lvm-llava pip install Pillow requests image_b64_str=$(python -c 'import base64;from io import BytesIO;import PIL.Image;import requests;image_path = "https://avatars.githubusercontent.com/u/39623753?s=40&v=4";image = PIL.Image.open(requests.get(image_path, stream=True, timeout=3000).raw);buffered = BytesIO();image.save(buffered, format="PNG");img_b64_str = base64.b64encode(buffered.getvalue()).decode();print(img_b64_str)') body="{\"img_b64_str\": \"${image_b64_str}\", \"prompt\": \"What is this?\", \"max_new_tokens\": 32}" url="http://localhost:9399/generate" curl $url -XPOST -d "$body" -H 'Content-Type: application/json' # Verify with lvm-video-llama body='{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt": "Describe the image.", "max_new_tokens": 32}' url="http://localhost:9399/v1/lvm-serve" curl $url -XPOST -d "$body" -H 'Content-Type: application/json' ``` ## Values | Key | Type | Default | Description | | ------------------------------- | ------ | ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | global.HUGGINGFACEHUB_API_TOKEN | string | `insert-your-huggingface-token-here` | Hugging Face API token | | global.modelUseHostPath | string | `""` | Cached models directory, service will not download if the model is cached here. The host path "modelUseHostPath" will be mounted to container as /data directory. Set this to null/empty will force it to download model. | | LVM_MODEL_ID | string | `"llava-hf/llava-1.5-7b-hf"` | | | autoscaling.enabled | bool | `false` | Enable HPA autoscaling for the service deployment based on metrics it provides. See [HPA instructions](../../HPA.md) before enabling! | | global.monitoring | bool | `false` | Enable usage metrics for the service. Required for HPA. See [monitoring instructions](../../monitoring.md) before enabling! |