# Build MegaService of VisualQnA on Gaudi This document outlines the deployment process for a VisualQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as llm. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service. ## 🚀 Build Docker Images First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub. ### 1. Build LVM and NGINX Docker Images ```bash git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps docker build --no-cache -t opea/lvm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/Dockerfile . docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . ``` ### 2. Build vLLM/Pull TGI Gaudi Image ```bash # vLLM # currently you have to build the opea/vllm-gaudi with the habana_main branch and the specific commit locally # we will update it to stable release tag in the future git clone https://github.com/HabanaAI/vllm-fork.git cd ./vllm-fork/ docker build -f Dockerfile.hpu -t opea/vllm-gaudi:latest --shm-size=128g . --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy cd .. rm -rf vllm-fork ``` ```bash # TGI (Optional) docker pull ghcr.io/huggingface/tgi-gaudi:2.0.6 ``` ### 3. Build MegaService Docker Image To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visualqna.py` Python script. Build the MegaService Docker image using the command below: ```bash git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/VisualQnA docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . cd ../.. ``` ### 4. Build UI Docker Image Build frontend Docker image via below command: ```bash cd GenAIExamples/VisualQnA/ui docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile . ``` Then run the command `docker images`, you will have the following 5 Docker Images: 1. `opea/vllm-gaudi:latest` 2. `ghcr.io/huggingface/tgi-gaudi:2.0.6` (Optional) 3. `opea/lvm:latest` 4. `opea/visualqna:latest` 5. `opea/visualqna-ui:latest` 6. `opea/nginx` ## 🚀 Start MicroServices and MegaService ### Setup Environment Variables Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. ```bash source set_env.sh ``` Note: Please replace with `host_ip` with you external IP address, do not use localhost. ### Start all the services Docker Containers ```bash cd GenAIExamples/VisualQnA/docker_compose/intel/hpu/gaudi/ ``` ```bash docker compose -f compose.yaml up -d # if use TGI as the LLM serving backend docker compose -f compose_tgi.yaml up -d ``` > **_NOTE:_** Users need at least one Gaudi cards to run the VisualQnA successfully. ### Validate MicroServices and MegaService Follow the instructions to validate MicroServices. > Note: If you see an "Internal Server Error" from the `curl` command, wait a few minutes for the microserver to be ready and then try again. 1. LLM Microservice ```bash http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json' ``` 2. MegaService ```bash curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{ "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What'\''s in this image?" }, { "type": "image_url", "image_url": { "url": "https://www.ilankelman.org/stopsigns/australia.jpg" } } ] } ], "max_tokens": 300 }' ``` ## 🚀 Launch the UI To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: ```yaml visualqna-gaudi-ui-server: image: opea/visualqna-ui:latest ... ports: - "80:5173" ```