# Build Mega Service of VisualQnA on AMD ROCm This document outlines the deployment process for a VisualQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service. ## 🚀 Build Docker Images First of all, you need to build Docker Images locally and install the python package of it. ### 1. Build LVM and NGINX Docker Images ```bash git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps docker build --no-cache -t opea/lvm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/Dockerfile . docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . ``` ### 2. Build MegaService Docker Image To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visualqna.py` Python script. Build MegaService Docker image via below command: ```bash git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/VisualQnA docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . ``` ### 3. Build UI Docker Image Build frontend Docker image via below command: ```bash cd GenAIExamples/VisualQnA/ui docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile . ``` ### 4. Pull TGI AMD ROCm Image ```bash docker pull ghcr.io/huggingface/text-generation-inference:2.4.1-rocm ``` Then run the command `docker images`, you will have the following 5 Docker Images: 1. `ghcr.io/huggingface/text-generation-inference:2.4.1-rocm` 2. `opea/lvm:latest` 3. `opea/visualqna:latest` 4. `opea/visualqna-ui:latest` 5. `opea/nginx` ## 🚀 Start Microservices ### Setup Environment Variables Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. **Export the value of the public IP address of your ROCM server to the `host_ip` environment variable** > Change the External_Public_IP below with the actual IPV4 value ``` export host_ip="External_Public_IP" ``` **Append the value of the public IP address to the no_proxy list** ``` export your_no_proxy="${your_no_proxy},${host_ip}" ``` ```bash export HOST_IP=${your_host_ip} export VISUALQNA_TGI_SERVICE_PORT="8399" export VISUALQNA_HUGGINGFACEHUB_API_TOKEN={your_hugginface_api_token} export VISUALQNA_CARD_ID="card1" export VISUALQNA_RENDER_ID="renderD136" export LVM_MODEL_ID="Xkev/Llama-3.2V-11B-cot" export MODEL="llava-hf/llava-v1.6-mistral-7b-hf" export LVM_ENDPOINT="http://${HOST_IP}:8399" export LVM_SERVICE_PORT=9399 export MEGA_SERVICE_HOST_IP=${HOST_IP} export LVM_SERVICE_HOST_IP=${HOST_IP} export BACKEND_SERVICE_ENDPOINT="http://${HOST_IP}:18003/v1/visualqna" export FRONTEND_SERVICE_IP=${HOST_IP} export FRONTEND_SERVICE_PORT=18001 export BACKEND_SERVICE_NAME=visualqna export BACKEND_SERVICE_IP=${HOST_IP} export BACKEND_SERVICE_PORT=18002 export NGINX_PORT=18003 ``` Note: Please replace with `host_ip` with you external IP address, do not use localhost. Note: You can use set_env.sh file with bash command (. setset_env.sh) to set up needed variables. ### Start all the services Docker Containers > Before running the docker compose command, you need to be in the folder that has the docker compose yaml file ```bash cd GenAIExamples/VisualQnA/docker_compose/amd/gpu/rocm ``` ```bash docker compose -f compose.yaml up -d ``` ### Validate Microservices Follow the instructions to validate MicroServices. > Note: If you see an "Internal Server Error" from the `curl` command, wait a few minutes for the microserver to be ready and then try again. 1. LLM Microservice ```bash http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json' ``` 2. MegaService ```bash curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{ "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What'\''s in this image?" }, { "type": "image_url", "image_url": { "url": "https://www.ilankelman.org/stopsigns/australia.jpg" } } ] } ], "max_tokens": 300 }' ``` ## 🚀 Launch the UI To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: ```yaml visualqna-gaudi-ui-server: image: opea/visualqna-ui:latest ... ports: - "80:5173" ```