# Build Mega Service of VisualQnA on AMD EPYC™ Processors This document outlines the deployment process for a VisualQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on AMD EPYC server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service. ## 🚀 Build Docker Images First of all, you need to build Docker Images locally and install the python package of it. ### 1. Build LVM and NGINX Docker Images ```bash git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps docker build --no-cache -t opea/lvm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/Dockerfile . docker build --no-cache -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . ``` ### 2. Build MegaService Docker Image To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `visualqna.py` Python script. Build MegaService Docker image via below command: ```bash git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/VisualQnA docker build --no-cache -t opea/visualqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . ``` ### 3. Build UI Docker Image Build frontend Docker image via below command: ```bash cd GenAIExamples/VisualQnA/ui docker build --no-cache -t opea/visualqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile . ``` ### 4. Pull vLLM/TGI epyc Image ```bash # vLLM docker pull opea/vllm:latest # TGI (Optional) docker pull ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu ``` Then run the command `docker images`, you will have the following Docker Images: 1. `opea/vllm:latest` 2. `ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu` (Optional) 3. `opea/lvm:latest` 4. `opea/visualqna:latest` 5. `opea/visualqna-ui:latest` 6. `opea/nginx` ## 🚀 Start Microservices ### Setup Environment Variables Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. ```bash source set_env.sh ``` Note: Please replace with `host_ip` with you external IP address, do not use localhost. Also set the `HF_TOKEN`. ### Start all the services Docker Containers > Before running the docker compose command, you need to be in the folder that has the docker compose yaml file ```bash cd GenAIExamples/VisualQnA/docker_compose/amd/cpu/epyc ``` ```bash docker compose -f compose.yaml up -d # if use TGI as the LLM serving backend docker compose -f compose_tgi.yaml up -d ``` ### Validate Microservices Follow the instructions to validate MicroServices. > Note: If you see an "Internal Server Error" from the `curl` command, wait a few minutes for the microserver to be ready and then try again. 1. LLM Microservice ```bash http_proxy="" curl http://${host_ip}:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json' ``` 2. MegaService ```bash curl http://${host_ip}:8888/v1/visualqna -H "Content-Type: application/json" -d '{ "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What'\''s in this image?" }, { "type": "image_url", "image_url": { "url": "https://www.ilankelman.org/stopsigns/australia.jpg" } } ] } ], "max_tokens": 300 }' ``` ## 🚀 Launch the UI To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: ```yaml visualqna-gaudi-ui-server: image: opea/visualqna-ui:latest ... ports: - "80:5173" ```