# Build Mega Service of CodeTrans on Gaudi This document outlines the deployment process for a CodeTrans application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Gaudi server. The steps include Docker image creation, container deployment via Docker Compose, and service execution using microservices `llm`. We will publish the Docker images to Docker Hub soon, it will simplify the deployment process for this service. The default pipeline deploys with vLLM as the LLM serving component. It also provides options of using TGI backend for LLM microservice, please refer to [start-microservice-docker-containers](#start-microservice-docker-containers) section in this page. ## 🚀 Build Docker Images First of all, you need to build Docker Images locally and install the python package of it. This step can be ignored after the Docker images published to Docker hub. ### 1. Build the LLM Docker Image ```bash git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps docker build -t opea/llm-textgen:latest --no-cache --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/src/text-generation/Dockerfile . ``` ### 2. Build MegaService Docker Image ```bash git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/CodeTrans docker build -t opea/codetrans:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . ``` ### 3. Build UI Docker Image ```bash cd GenAIExamples/CodeTrans/ui docker build -t opea/codetrans-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f docker/Dockerfile . ``` ### 4. Build Nginx Docker Image ```bash cd GenAIComps docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . ``` Then run the command `docker images`, you will have the following Docker Images: - `opea/llm-textgen:latest` - `opea/codetrans:latest` - `opea/codetrans-ui:latest` - `opea/nginx:latest` ## 🚀 Start Microservices ### Required Models By default, the LLM model is set to a default value as listed below: | Service | Model | | ------- | ---------------------------------- | | LLM | mistralai/Mistral-7B-Instruct-v0.3 | Change the `LLM_MODEL_ID` below for your needs. For users in China who are unable to download models directly from Huggingface, you can use [ModelScope](https://www.modelscope.cn/models) or a Huggingface mirror to download models. The vLLM/TGI can load the models either online or offline as described below: 1. Online ```bash export HF_TOKEN=${your_hf_token} export HF_ENDPOINT="https://hf-mirror.com" model_name="mistralai/Mistral-7B-Instruct-v0.3" # Start vLLM LLM Service docker run -p 8008:80 -v ./data:/root/.cache/huggingface/hub --name vllm-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 128g opea/vllm:latest --model $model_name --host 0.0.0.0 --port 80 # Start TGI LLM Service docker run -p 8008:80 -v ./data:/data --name tgi-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu --model-id $model_name ``` 2. Offline - Search your model name in ModelScope. For example, check [this page](https://www.modelscope.cn/models/rubraAI/Mistral-7B-Instruct-v0.3/files) for model `mistralai/Mistral-7B-Instruct-v0.3`. - Click on `Download this model` button, and choose one way to download the model to your local path `/path/to/model`. - Run the following command to start the LLM service. ```bash export HF_TOKEN=${your_hf_token} export model_path="/path/to/model" # Start vLLM LLM Service docker run -p 8008:80 -v $model_path:/root/.cache/huggingface/hub --name vllm-service --shm-size 128g opea/vllm:latest --model /root/.cache/huggingface/hub --host 0.0.0.0 --port 80 # Start TGI LLM Service docker run -p 8008:80 -v $model_path:/data --name tgi-service --shm-size 1g ghcr.io/huggingface/text-generation-inference:2.4.0-intel-cpu --model-id /data ``` ### Setup Environment Variables 1. Set the required environment variables: ```bash # Example: host_ip="192.168.1.1" export host_ip="External_Public_IP" # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" export no_proxy="Your_No_Proxy" export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token" # Example: NGINX_PORT=80 export NGINX_PORT=${your_nginx_port} ``` 2. If you are in a proxy environment, also set the proxy-related environment variables: ```bash export http_proxy="Your_HTTP_Proxy" export https_proxy="Your_HTTPs_Proxy" ``` 3. Set up other environment variables: ```bash cd GenAIExamples/CodeTrans/docker_compose source ./set_env.sh ``` ### Start Microservice Docker Containers ```bash cd GenAIExamples/CodeTrans/docker_compose/intel/hpu/gaudi ``` If use vLLM as the LLM serving backend. ```bash docker compose -f compose.yaml up -d ``` If use TGI as the LLM serving backend. ```bash docker compose -f compose_tgi.yaml up -d ``` ### Validate Microservices 1. LLM backend Service In the first startup, this service will take more time to download, load and warm up the model. After it's finished, the service will be ready. Try the command below to check whether the LLM serving is ready. ```bash # vLLM service docker logs codetrans-gaudi-vllm-service 2>&1 | grep complete # If the service is ready, you will get the response like below. INFO: Application startup complete. ``` ```bash # TGI service docker logs codetrans-gaudi-tgi-service | grep Connected # If the service is ready, you will get the response like below. 2024-09-03T02:47:53.402023Z INFO text_generation_router::server: router/src/server.rs:2311: Connected ``` Then try the `cURL` command below to validate services. ```bash curl http://${host_ip}:8008/generate \ -X POST \ -d '{"inputs":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:","parameters":{"max_new_tokens":17, "do_sample": true}}' \ -H 'Content-Type: application/json' ``` 2. LLM Microservice ```bash curl http://${host_ip}:9000/v1/chat/completions\ -X POST \ -d '{"text":" ### System: Please translate the following Golang codes into Python codes. ### Original codes: '\'''\'''\''Golang \npackage main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n '\'''\'''\'' ### Translated codes:"}' \ -H 'Content-Type: application/json' ``` 3. MegaService ```bash curl http://${host_ip}:7777/v1/codetrans \ -H "Content-Type: application/json" \ -d '{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}"}' ``` 4. Nginx Service ```bash curl http://${host_ip}:${NGINX_PORT}/v1/codetrans \ -H "Content-Type: application/json" \ -d '{"language_from": "Golang","language_to": "Python","source_code": "package main\n\nimport \"fmt\"\nfunc main() {\n fmt.Println(\"Hello, World!\");\n}"}' ``` ## 🚀 Launch the UI ### Launch with origin port Open this URL `http://{host_ip}:5173` in your browser to access the frontend. ### Launch with Nginx If you want to launch the UI using Nginx, open this URL: `http://{host_ip}:{NGINX_PORT}` in your browser to access the frontend. ![image](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/71214938-819c-4979-89cb-c03d937cd7b5) Here is an example for summarizing a article. ![image](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/be543e96-ddcd-4ee0-9f2c-4e99fee77e37)