# Build Mega Service of ChatQnA (with Qdrant) on Xeon This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `embedding`, `retriever`, `rerank`, and `llm`. The default pipeline deploys with vLLM as the LLM serving component and leverages rerank component. Note: The default LLM is `meta-llama/Meta-Llama-3-8B-Instruct`. Before deploying the application, please make sure either you've requested and been granted the access to it on [Huggingface](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) or you've downloaded the model locally from [ModelScope](https://www.modelscope.cn/models). ## 🚀 Apply Xeon Server on AWS To apply a Xeon server on AWS, start by creating an AWS account if you don't have one already. Then, head to the [EC2 Console](https://console.aws.amazon.com/ec2/v2/home) to begin the process. Within the EC2 service, select the Amazon EC2 M7i or M7i-flex instance type to leverage the power of 4th Generation Intel Xeon Scalable processors. These instances are optimized for high-performance computing and demanding workloads. For detailed information about these instance types, you can refer to this [link](https://aws.amazon.com/ec2/instance-types/m7i/). Once you've chosen the appropriate instance type, proceed with configuring your instance settings, including network configurations, security groups, and storage options. After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed. **Certain ports in the EC2 instance need to opened up in the security group, for the microservices to work with the curl commands** > See one example below. Please open up these ports in the EC2 instance based on the IP addresses you want to allow ``` qdrant-vector-db =============== Port 6333 - Open to 0.0.0.0/0 Port 6334 - Open to 0.0.0.0/0 dataprep-qdrant-server ====================== Port 6043 - Open to 0.0.0.0/0 tei_embedding_service ===================== Port 6040 - Open to 0.0.0.0/0 embedding ========= Port 6044 - Open to 0.0.0.0/0 retriever ========= Port 6045 - Open to 0.0.0.0/0 tei_reranking_service ================ Port 6041 - Open to 0.0.0.0/0 reranking ========= Port 6046 - Open to 0.0.0.0/0 vllm-service =========== Port 6042 - Open to 0.0.0.0/0 llm === Port 6047 - Open to 0.0.0.0/0 chaqna-xeon-backend-server ========================== Port 8912 - Open to 0.0.0.0/0 chaqna-xeon-ui-server ===================== Port 5173 - Open to 0.0.0.0/0 ``` ## 🚀 Build Docker Images First of all, you need to build Docker Images locally and install the python package of it. ```bash git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps ``` ### 1. Build Retriever Image ```bash docker build --no-cache -t opea/retriever:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/src/Dockerfile . ``` ### 2. Build Dataprep Image ```bash docker build --no-cache -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile . cd .. ``` ### 3. Build MegaService Docker Image To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command: ```bash git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/ChatQnA/ docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . cd ../../.. ``` ### 4. Build UI Docker Image Build frontend Docker image via below command: ```bash cd GenAIExamples/ChatQnA/ui docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile . cd ../../../.. ``` ### 5. Build Conversational React UI Docker Image (Optional) Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command: **Export the value of the public IP address of your Xeon server to the `host_ip` environment variable** ```bash cd GenAIExamples/ChatQnA/ui export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8912/v1/chatqna" export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6043/v1/dataprep/ingest" docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg BACKEND_SERVICE_ENDPOINT=$BACKEND_SERVICE_ENDPOINT --build-arg DATAPREP_SERVICE_ENDPOINT=$DATAPREP_SERVICE_ENDPOINT -f ./docker/Dockerfile.react . cd ../../../.. ``` ### 6. Build Nginx Docker Image ```bash cd GenAIComps docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . ``` Then run the command `docker images`, you will have the following 5 Docker Images: 1. `opea/dataprep:latest` 2. `opea/retriever:latest` 3. `opea/chatqna:latest` 4. `opea/chatqna-ui:latest` 5. `opea/nginx:latest` ## 🚀 Start Microservices ### Required Models By default, the embedding, reranking and LLM models are set to a default value as listed below: | Service | Model | | --------- | ----------------------------------- | | Embedding | BAAI/bge-base-en-v1.5 | | Reranking | BAAI/bge-reranker-base | | LLM | meta-llama/Meta-Llama-3-8B-Instruct | Change the `xxx_MODEL_ID` below for your needs. ### Setup Environment Variables Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. **Export the value of the public IP address of your Xeon server to the `host_ip` environment variable** > Change the External_Public_IP below with the actual IPV4 value ``` export host_ip="External_Public_IP" ``` **Export the value of your Huggingface API token to the `your_hf_api_token` environment variable** > Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value ``` export your_hf_api_token="Your_Huggingface_API_Token" ``` **Append the value of the public IP address to the no_proxy list if you are in a proxy environment** ``` export your_no_proxy=${your_no_proxy},"External_Public_IP",chatqna-xeon-ui-server,chatqna-xeon-backend-server,dataprep-qdrant-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service ``` ```bash export no_proxy=${your_no_proxy} export http_proxy=${your_http_proxy} export https_proxy=${your_http_proxy} export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5" export RERANK_MODEL_ID="BAAI/bge-reranker-base" export LLM_MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct" export INDEX_NAME="rag-qdrant" ``` Note: Please replace with `host_ip` with you external IP address, do not use localhost. ### Start all the services Docker Containers > Before running the docker compose command, you need to be in the folder that has the docker compose yaml file ```bash cd GenAIExamples/ChatQnA/docker_compose/intel/cpu/xeon/ docker compose -f compose_qdrant.yaml up -d ``` ### Validate Microservices Follow the instructions to validate MicroServices. For details on how to verify the correctness of the response, refer to [how-to-validate_service](../../hpu/gaudi/how_to_validate_service.md). 1. TEI Embedding Service ```bash curl ${host_ip}:6040/embed \ -X POST \ -d '{"inputs":"What is Deep Learning?"}' \ -H 'Content-Type: application/json' ``` 2. Retriever Microservice To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector is determined by the embedding model. Here we use the model `EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"`, which vector size is 768. Check the vecotor dimension of your embedding model, set `your_embedding` dimension equals to it. ```bash export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://${host_ip}:6045/v1/retrieval \ -X POST \ -d '{"text":"What is the revenue of Nike in 2023?","embedding":"'"${your_embedding}"'"}' \ -H 'Content-Type: application/json' ``` 3. TEI Reranking Service ```bash curl http://${host_ip}:6041/rerank \ -X POST \ -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \ -H 'Content-Type: application/json' ``` 4. LLM Backend Service In the first startup, this service will take more time to download, load and warm up the model. After it's finished, the service will be ready. Try the command below to check whether the LLM service is ready. ```bash docker logs vllm-service 2>&1 | grep complete ``` If the service is ready, you will get the response like below. ```text INFO: Application startup complete. ``` Then try the `cURL` command below to validate vLLM service. ```bash curl http://${host_ip}:6042/v1/chat/completions \ -X POST \ -d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}' \ -H 'Content-Type: application/json' ``` 5. MegaService ```bash curl http://${host_ip}:8912/v1/chatqna -H "Content-Type: application/json" -d '{ "messages": "What is the revenue of Nike in 2023?" }' ``` 6. Dataprep Microservice(Optional) If you want to update the default knowledge base, you can use the following commands: Update Knowledge Base via Local File Upload: ```bash curl -X POST "http://${host_ip}:6043/v1/dataprep/ingest" \ -H "Content-Type: multipart/form-data" \ -F "files=@./your_file.pdf" ``` This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment. Add Knowledge Base via HTTP Links: ```bash curl -X POST "http://${host_ip}:6043/v1/dataprep/ingest" \ -H "Content-Type: multipart/form-data" \ -F 'link_list=["https://opea.dev"]' ``` ## 🚀 Launch the UI To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: ```yaml chaqna-gaudi-ui-server: image: opea/chatqna-ui:latest ... ports: - "80:5173" ``` ## 🚀 Launch the Conversational UI (react) To access the Conversational UI frontend, open the following URL in your browser: http://{host_ip}:5174. By default, the UI runs on port 80 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: ```yaml chaqna-xeon-conversation-ui-server: image: opea/chatqna-conversation-ui:latest ... ports: - "80:80" ``` ![project-screenshot](../../../../assets/img/chat_ui_init.png) Here is an example of running ChatQnA: ![project-screenshot](../../../../assets/img/chat_ui_response.png) Here is an example of running ChatQnA with Conversational UI (React): ![project-screenshot](../../../../assets/img/conversation_ui_response.png)