# Build Mega Service of ChatQnA on Xeon This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on Intel Xeon server. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `embedding`, `retriever`, `rerank`, and `llm`. The default pipeline deploys with vLLM as the LLM serving component and leverages rerank component. Quick Start: 1. Set up the environment variables. 2. Run Docker Compose. 3. Consume the ChatQnA Service. Note: The default LLM is `meta-llama/Meta-Llama-3-8B-Instruct`. Before deploying the application, please make sure either you've requested and been granted the access to it on [Huggingface](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) or you've downloaded the model locally from [ModelScope](https://www.modelscope.cn/models). ## Quick Start: 1.Setup Environment Variable To set up environment variables for deploying ChatQnA services, follow these steps: 1. Set the required environment variables: ```bash # Example: host_ip="192.168.1.1" export host_ip="External_Public_IP" export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token" export PINECONE_API_KEY="Pinecone_API_Key" export PINECONE_INDEX_NAME="Pinecone_Index_Name" export INDEX_NAME="Pinecone_Index_Name" ``` 2. If you are in a proxy environment, also set the proxy-related environment variables: ```bash export http_proxy="Your_HTTP_Proxy" export https_proxy="Your_HTTPs_Proxy" # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" export no_proxy="Your_No_Proxy",chatqna-xeon-ui-server,chatqna-xeon-backend-server,dataprep-pinecone-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service ``` 3. Set up other environment variables, make sure to update the INDEX_NAME variable to Pinecone index value: ```bash source ./set_env.sh ``` ## Quick Start: 2.Run Docker Compose ```bash docker compose -f compose_pinecone.yaml up -d ``` It will automatically download the docker image on `docker hub`: ```bash docker pull opea/chatqna:latest docker pull opea/chatqna-ui:latest ``` NB: You should build docker image from source by yourself if: - You are developing off the git main branch (as the container's ports in the repo may be different from the published docker image). - You can't download the docker image. - You want to use a specific version of Docker image. Please refer to ['Build Docker Images'](#🚀-build-docker-images) in below. ## QuickStart: 3.Consume the ChatQnA Service ```bash curl http://${host_ip}:8888/v1/chatqna \ -H "Content-Type: application/json" \ -d '{ "messages": "What is the revenue of Nike in 2023?" }' ``` ## 🚀 Apply Xeon Server on AWS To apply a Xeon server on AWS, start by creating an AWS account if you don't have one already. Then, head to the [EC2 Console](https://console.aws.amazon.com/ec2/v2/home) to begin the process. Within the EC2 service, select the Amazon EC2 M7i or M7i-flex instance type to leverage 4th Generation Intel Xeon Scalable processors that are optimized for demanding workloads. For detailed information about these instance types, you can refer to this [link](https://aws.amazon.com/ec2/instance-types/m7i/). Once you've chosen the appropriate instance type, proceed with configuring your instance settings, including network configurations, security groups, and storage options. After launching your instance, you can connect to it using SSH (for Linux instances) or Remote Desktop Protocol (RDP) (for Windows instances). From there, you'll have full access to your Xeon server, allowing you to install, configure, and manage your applications as needed. ### Network Port & Security - Access the ChatQnA UI by web browser It supports to access by `80` port. Please confirm the `80` port is opened in the firewall of EC2 instance. - Access the microservice by tool or API 1. Login to the EC2 instance and access by **local IP address** and port. It's recommended and do nothing of the network port setting. 2. Login to a remote client and access by **public IP address** and port. You need to open the port of the microservice in the security group setting of firewall of EC2 instance setting. For detailed guide, please refer to [Validate Microservices](#validate-microservices). Note, it will increase the risk of security, so please confirm before do it. ## 🚀 Build Docker Images First of all, you need to build Docker Images locally and install the python package of it. ```bash git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps ``` ### 1. Build Retriever Image ```bash docker build --no-cache -t opea/retriever:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/src/Dockerfile . ``` ### 2. Build Dataprep Image ```bash docker build --no-cache -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile . cd .. ``` ### 3. Build MegaService Docker Image 1. MegaService with Rerank To construct the Mega Service with Rerank, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command: ```bash git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/ChatQnA docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . ``` 2. MegaService without Rerank To construct the Mega Service without Rerank, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna_without_rerank.py` Python script. Build MegaService Docker image via below command: ```bash git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/ChatQnA docker build --no-cache -t opea/chatqna-without-rerank:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile.without_rerank . ``` ### 4. Build UI Docker Image Build frontend Docker image via below command: ```bash cd GenAIExamples/ChatQnA/ui docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile . ``` ### 5. Build Conversational React UI Docker Image (Optional) Build frontend Docker image that enables Conversational experience with ChatQnA megaservice via below command: **Export the value of the public IP address of your Xeon server to the `host_ip` environment variable** ```bash cd GenAIExamples/ChatQnA/ui docker build --no-cache -t opea/chatqna-conversation-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile.react . ``` ### 6. Build Nginx Docker Image ```bash cd GenAIComps docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . ``` Then run the command `docker images`, you will have the following 5 Docker Images: 1. `opea/dataprep:latest` 2. `opea/retriever:latest` 3. `opea/chatqna:latest` or `opea/chatqna-without-rerank:latest` 4. `opea/chatqna-ui:latest` 5. `opea/nginx:latest` ## 🚀 Start Microservices ### Required Models By default, the embedding, reranking and LLM models are set to a default value as listed below: | Service | Model | | --------- | ----------------------------------- | | Embedding | BAAI/bge-base-en-v1.5 | | Reranking | BAAI/bge-reranker-base | | LLM | meta-llama/Meta-Llama-3-8B-Instruct | Change the `xxx_MODEL_ID` below for your needs. For users in China who are unable to download models directly from Huggingface, you can use [ModelScope](https://www.modelscope.cn/models) or a Huggingface mirror to download models. The vLLM can load the models either online or offline as described below: 1. Online ```bash export HF_TOKEN=${your_hf_token} export HF_ENDPOINT="https://hf-mirror.com" model_name="meta-llama/Meta-Llama-3-8B-Instruct" docker run -p 8008:80 -v ./data:/root/.cache/huggingface/hub --name vllm-service -e HF_ENDPOINT=$HF_ENDPOINT -e http_proxy=$http_proxy -e https_proxy=$https_proxy --shm-size 128g opea/vllm:latest --model $model_name --host 0.0.0.0 --port 80 ``` 2. Offline - Search your model name in ModelScope. For example, check [this page](https://modelscope.cn/models/LLM-Research/Meta-Llama-3-8B-Instruct/files) for model `Meta-Llama-3-8B-Instruct`. - Click on `Download this model` button, and choose one way to download the model to your local path `/path/to/model`. - Run the following command to start the LLM service. ```bash export HF_TOKEN=${your_hf_token} export model_path="/path/to/model" docker run -p 8008:80 -v $model_path:/root/.cache/huggingface/hub --name vllm-service --shm-size 128g opea/vllm:latest --model /root/.cache/huggingface/hub --host 0.0.0.0 --port 80 ``` ### Setup Environment Variables 1. Set the required environment variables: ```bash # Example: host_ip="192.168.1.1" export host_ip="External_Public_IP" export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token" # Example: NGINX_PORT=80 export NGINX_PORT=${your_nginx_port} export PINECONE_API_KEY="Pinecone_API_Key" export PINECONE_INDEX_NAME="Pinecone_Index_Name" export INDEX_NAME="Pinecone_Index_Name" ``` 2. If you are in a proxy environment, also set the proxy-related environment variables: ```bash export http_proxy="Your_HTTP_Proxy" export https_proxy="Your_HTTPs_Proxy" # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" export no_proxy="Your_No_Proxy",chatqna-xeon-ui-server,chatqna-xeon-backend-server,dataprep-pinecone-service,tei-embedding-service,retriever,tei-reranking-service,tgi-service,vllm-service ``` 3. Set up other environment variables, make sure to update the INDEX_NAME variable to use Pinecone Index name: ```bash source ./set_env.sh ``` ### Start all the services Docker Containers > Before running the docker compose command, you need to be in the folder that has the docker compose yaml file ```bash cd GenAIExamples/ChatQnA/docker_compose/intel/cpu/xeon/ ``` If use vLLM backend. ```bash # Start ChatQnA with Rerank Pipeline docker compose -f compose_pinecone.yaml up -d ``` ### Validate Microservices Note, when verify the microservices by curl or API from remote client, please make sure the **ports** of the microservices are opened in the firewall of the cloud node. Follow the instructions to validate MicroServices. For details on how to verify the correctness of the response, refer to [how-to-validate_service](../../hpu/gaudi/how_to_validate_service.md). 1. TEI Embedding Service ```bash curl ${host_ip}:6006/embed \ -X POST \ -d '{"inputs":"What is Deep Learning?"}' \ -H 'Content-Type: application/json' ``` 2. Retriever Microservice To consume the retriever microservice, you need to generate a mock embedding vector by Python script. The length of embedding vector is determined by the embedding model. Here we use the model `EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"`, which vector size is 768. Check the vector dimension of your embedding model, set `your_embedding` dimension equals to it. ```bash export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://${host_ip}:7000/v1/retrieval \ -X POST \ -d "{\"text\":\"test\",\"embedding\":${your_embedding}}" \ -H 'Content-Type: application/json' ``` 3. TEI Reranking Service > Skip for ChatQnA without Rerank pipeline ```bash curl http://${host_ip}:8808/rerank \ -X POST \ -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \ -H 'Content-Type: application/json' ``` 4. LLM backend Service In the first startup, this service will take more time to download, load and warm up the model. After it's finished, the service will be ready. Try the command below to check whether the LLM serving is ready. ```bash docker logs vllm-service 2>&1 | grep complete ``` If the service is ready, you will get the response like below. ```text INFO: Application startup complete. ``` Then try the `cURL` command below to validate services. ```bash curl http://${host_ip}:9009/v1/chat/completions \ -X POST \ -d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}' \ -H 'Content-Type: application/json' ``` 5. MegaService ```bash curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{ "messages": "What is the revenue of Nike in 2023?" }' ``` 6. Nginx Service ```bash curl http://${host_ip}:${NGINX_PORT}/v1/chatqna \ -H "Content-Type: application/json" \ -d '{"messages": "What is the revenue of Nike in 2023?"}' ``` 7. Dataprep Microservice(Optional) If you want to update the default knowledge base, you can use the following commands: Update Knowledge Base via Local File [nke-10k-2023.pdf](https://github.com/opea-project/GenAIComps/blob/v1.1/comps/retrievers/redis/data/nke-10k-2023.pdf). Or click [here](https://raw.githubusercontent.com/opea-project/GenAIComps/v1.1/comps/retrievers/redis/data/nke-10k-2023.pdf) to download the file via any web browser. Or run this command to get the file on a terminal. ```bash wget https://raw.githubusercontent.com/opea-project/GenAIComps/v1.1/comps/retrievers/redis/data/nke-10k-2023.pdf ``` Upload: ```bash curl -X POST "http://${host_ip}:6007/v1/dataprep/ingest" \ -H "Content-Type: multipart/form-data" \ -F "files=@./nke-10k-2023.pdf" ``` This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment. Add Knowledge Base via HTTP Links: ```bash curl -X POST "http://${host_ip}:6007/v1/dataprep/ingest" \ -H "Content-Type: multipart/form-data" \ -F 'link_list=["https://opea.dev"]' ``` This command updates a knowledge base by submitting a list of HTTP links for processing. To delete the files/link you uploaded: ```bash # delete all uploaded files and links curl -X POST "http://${host_ip}:6009/v1/dataprep/delete" \ -d '{"file_path": "all"}' \ -H "Content-Type: application/json" ``` ## 🚀 Launch the UI ### Launch with origin port To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: ```yaml chaqna-gaudi-ui-server: image: opea/chatqna-ui:latest ... ports: - "80:5173" ``` ### Launch with Nginx If you want to launch the UI using Nginx, open this URL: `http://${host_ip}:${NGINX_PORT}` in your browser to access the frontend. ## 🚀 Launch the Conversational UI (Optional) To access the Conversational UI (react based) frontend, modify the UI service in the `compose.yaml` file. Replace `chaqna-xeon-ui-server` service with the `chatqna-xeon-conversation-ui-server` service as per the config below: ```yaml chaqna-xeon-conversation-ui-server: image: opea/chatqna-conversation-ui:latest container_name: chatqna-xeon-conversation-ui-server environment: - APP_BACKEND_SERVICE_ENDPOINT=${BACKEND_SERVICE_ENDPOINT} - APP_DATA_PREP_SERVICE_URL=${DATAPREP_SERVICE_ENDPOINT} ports: - "5174:80" depends_on: - chaqna-xeon-backend-server ipc: host restart: always ``` Once the services are up, open the following URL in your browser: http://{host_ip}:5174. By default, the UI runs on port 80 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `compose.yaml` file as shown below: ```yaml chaqna-gaudi-conversation-ui-server: image: opea/chatqna-conversation-ui:latest ... ports: - "80:80" ``` ![project-screenshot](../../../../assets/img/chat_ui_init.png) Here is an example of running ChatQnA: ![project-screenshot](../../../../assets/img/chat_ui_response.png) Here is an example of running ChatQnA with Conversational UI (React): ![project-screenshot](../../../../assets/img/conversation_ui_response.png)