# Build Mega Service of ChatQnA on AIPC This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on AIPC. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `embedding`, `retriever`, `rerank`, and `llm`. ## Quick Start: 1. Set up the environment variables. 2. Run Docker Compose. 3. Consume the ChatQnA Service. ### Quick Start: 1. Set up Environment Variable To set up environment variables for deploying ChatQnA services, follow these steps: ```bash mkdir ~/OPEA -p cd ~/OPEA git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/ChatQnA/docker_compose/intel/cpu/aipc ``` 1. Set the required environment variables: ```bash export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token" ``` 2. If you are in a proxy environment, also set the proxy-related environment variables: ```bash export https_proxy="Your_HTTPs_Proxy" # Example: no_proxy="localhost, 127.0.0.1, 192.168.1.1" export no_proxy=$no_proxy,chatqna-aipc-backend-server,tei-embedding-service,retriever,tei-reranking-service,redis-vector-db,dataprep-redis-service,ollama-service ``` 3. Set up other environment variables By default, llama3.2 is used for LLM serving, the default model can be changed to other LLM models. Please pick a [validated llm models](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/src/text-generation#validated-llm-models) from the table. To change the default model defined in set_env.sh, overwrite it by exporting OLLAMA_MODEL to the new model or by modifying set_env.sh. For example, change to using the following model. ```bash export OLLAMA_MODEL="deepseek-r1:8b" ``` to use the [DeepSeek-R1-Distill-Llama-8B model](https://ollama.com/library/deepseek-r1:8b) ```bash source ./set_env.sh ``` ### Quick Start: 2. Run Docker Compose ```bash docker compose up -d ``` It will take several minutes to automatically download the docker images NB: You should build docker image from source by yourself if: - You are developing off the git main branch (as the container's ports in the repo may be different from the published docker image). - You can't download the docker image. - You want to use a specific version of Docker image. Please refer to ['Build Docker Images'](#🚀-build-docker-images) in below. ### Quick Start:3. Consume the ChatQnA Service Once the services are up, open the following URL from your browser: http://{host_ip}:80. Enter Prompt like What is deep learning? Or if you prefer to try only on the localhost machine, then try ```bash curl http://${host_ip}:8888/v1/chatqna \ -H "Content-Type: application/json" \ -d '{ "messages": "What is deep learning?" }' ``` ## 🚀 Build Docker Images First of all, you need to build Docker Images locally and install the python package of it. ```bash mkdir ~/OPEA -p cd ~/OPEA git clone https://github.com/opea-project/GenAIComps.git cd GenAIComps ``` If you are in a proxy environment, set the proxy-related environment variables: export http_proxy="Your_HTTP_Proxy" export https_proxy="Your_HTTPs_Proxy" ### 1. Build Retriever Image ```bash docker build --no-cache -t opea/retriever:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/src/Dockerfile . ``` ### 2. Build Dataprep Image ```bash docker build --no-cache -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/src/Dockerfile . cd .. ``` ### 3. Build MegaService Docker Image To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command: ```bash cd ~/OPEA git clone https://github.com/opea-project/GenAIExamples.git cd GenAIExamples/ChatQnA docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile . ``` ### 4. Build UI Docker Image Build frontend Docker image via below command: ```bash cd ~/OPEA/GenAIExamples/ChatQnA/ui docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile . ``` ### 5. Build Nginx Docker Image ```bash cd GenAIComps docker build -t opea/nginx:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/third_parties/nginx/src/Dockerfile . ``` Then run the command `docker images`, you will have the following Docker Images: 1. `opea/dataprep:latest` 2. `opea/retriever:latest` 3. `opea/chatqna:latest` 4. `opea/chatqna-ui:latest` 5. `opea/nginx:latest` ## 🚀 Start Microservices ### Setup Environment Variables Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below. **Export the value of the public IP address of your AIPC to the `host_ip` environment variable** > Change the External_Public_IP below with the actual IPV4 value ``` export host_ip="External_Public_IP" ``` For Linux users, please run `hostname -I | awk '{print $1}'`. For Windows users, please run `ipconfig | findstr /i "IPv4"` to get the external public ip. **Export the value of your Huggingface API token to the `HUGGINGFACEHUB_API_TOKEN` environment variable** > Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value ``` export HUGGINGFACEHUB_API_TOKEN="Your_Huggingface_API_Token" ``` **Append the value of the public IP address to the no_proxy list if you are in a proxy environment** ``` export your_no_proxy=${your_no_proxy},"External_Public_IP",chatqna-aipc-backend-server,tei-embedding-service,retriever,tei-reranking-service,redis-vector-db,dataprep-redis-service,ollama-service ``` - Linux PC ```bash export no_proxy=${your_no_proxy} export http_proxy=${your_http_proxy} export https_proxy=${your_http_proxy} export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5" export RERANK_MODEL_ID="BAAI/bge-reranker-base" export INDEX_NAME="rag-redis" export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} export OLLAMA_HOST=${host_ip} export OLLAMA_MODEL="llama3.2" ``` - Windows PC ```bash set EMBEDDING_MODEL_ID=BAAI/bge-base-en-v1.5 set RERANK_MODEL_ID=BAAI/bge-reranker-base set INDEX_NAME=rag-redis set HUGGINGFACEHUB_API_TOKEN=%HUGGINGFACEHUB_API_TOKEN% set OLLAMA_HOST=host.docker.internal set OLLAMA_MODEL="llama3.2" ``` Note: Please replace with `host_ip` with you external IP address, do not use localhost. ### Start all the services Docker Containers > Before running the docker compose command, you need to be in the folder that has the docker compose yaml file ```bash cd ~/OPEA/GenAIExamples/ChatQnA/docker_compose/intel/cpu/aipc/ docker compose up -d ``` ### Validate Microservices Follow the instructions to validate MicroServices. For details on how to verify the correctness of the response, refer to [how-to-validate_service](../../hpu/gaudi/how_to_validate_service.md). 1. TEI Embedding Service ```bash curl ${host_ip}:6006/embed \ -X POST \ -d '{"inputs":"What is Deep Learning?"}' \ -H 'Content-Type: application/json' ``` 2. Retriever Microservice To validate the retriever microservice, you need to generate a mock embedding vector of length 768 in Python script: ```bash export your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://${host_ip}:7000/v1/retrieval \ -X POST \ -d '{"text":"What is the revenue of Nike in 2023?","embedding":"'"${your_embedding}"'"}' \ -H 'Content-Type: application/json' ``` 3. TEI Reranking Service ```bash curl http://${host_ip}:8808/rerank \ -X POST \ -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \ -H 'Content-Type: application/json' ``` 4. Ollama Service ```bash curl http://${host_ip}:11434/api/generate -d '{"model": "llama3.2", "prompt":"What is Deep Learning?"}' ``` 5. MegaService ```bash curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{ "messages": "What is the revenue of Nike in 2023?" }' ``` 6. Upload RAG Files through Dataprep Microservice (Optional) To chat with retrieved information, you need to upload a file using Dataprep service. Here is an example of Nike 2023 pdf file. ```bash # download pdf file wget https://raw.githubusercontent.com/opea-project/GenAIComps/v1.1/comps/retrievers/redis/data/nke-10k-2023.pdf # upload pdf file with dataprep curl -X POST "http://${host_ip}:6007/v1/dataprep/ingest" \ -H "Content-Type: multipart/form-data" \ -F "files=@./nke-10k-2023.pdf" ``` This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment. Alternatively, you can add knowledge base via HTTP Links: ```bash curl -X POST "http://${host_ip}:6007/v1/dataprep/ingest" \ -H "Content-Type: multipart/form-data" \ -F 'link_list=["https://opea.dev"]' ``` This command updates a knowledge base by submitting a list of HTTP links for processing. To check the uploaded files, you are able to get the file list that uploaded: ```bash curl -X POST "http://${host_ip}:6007/v1/dataprep/get" \ -H "Content-Type: application/json" ``` the output is: `[{"name":"nke-10k-2023.pdf","id":"nke-10k-2023.pdf","type":"File","parent":""}]` ## 🚀 Launch the UI To access the frontend, open the following URL in your browser: http://{host_ip}:80.