# 🛢 Text-to-SQL Microservice In today's data-driven world, the ability to efficiently extract insights from databases is crucial. However, querying databases often requires specialized knowledge of SQL(Structured Query Language) and database schemas, which can be a barrier for non-technical users. This is where the Text-to-SQL microservice comes into play, leveraging the power of LLMs and agentic frameworks to bridge the gap between human language and database queries. This microservice is built on LangChain/LangGraph frameworks. The microservice enables a wide range of use cases, making it a versatile tool for businesses, researchers, and individuals alike. Users can generate queries based on natural language questions, enabling them to quickly retrieve relevant data from their databases. Additionally, the service can be integrated into ChatBots, allowing for natural language interactions and providing accurate responses based on the underlying data. Furthermore, it can be utilized to build custom dashboards, enabling users to visualize and analyze insights based on their specific requirements, all through the power of natural language. --- ## 🛠️ Features **Implement SQL Query based on input text**: Transform user-provided natural language into SQL queries, subsequently executing them to retrieve data from SQL databases. --- ## ⚙️ Implementation The text-to-sql microservice able to implement with various framework and support various types of SQL databases. ### 🔗 Utilizing Text-to-SQL with Langchain framework The follow guide provides set-up instructions and comprehensive details regarding the Text-to-SQL microservices via LangChain. In this configuration, we will employ PostgresDB as our example database to showcase this microservice. --- #### 🚀 Start Microservice with Python(Option 1) #### Install Requirements ```bash pip install -r requirements.txt ``` #### Start PostgresDB Service We will use [Chinook](https://github.com/lerocha/chinook-database) sample database as a default to test the Text-to-SQL microservice. Chinook database is a sample database ideal for demos and testing ORM tools targeting single and multiple database servers. ```bash export POSTGRES_USER=postgres export POSTGRES_PASSWORD=testpwd export POSTGRES_DB=chinook cd comps/text2sql docker run --name postgres-db --ipc=host -e POSTGRES_USER=${POSTGRES_USER} -e POSTGRES_HOST_AUTH_METHOD=trust -e POSTGRES_DB=${POSTGRES_DB} -e POSTGRES_PASSWORD=${POSTGRES_PASSWORD} -p 5442:5432 -d -v ./chinook.sql:/docker-entrypoint-initdb.d/chinook.sql postgres:latest ``` #### Start TGI Service ```bash export HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} export LLM_MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3" export TGI_PORT=8008 docker run -d --name="text2sql-tgi-endpoint" --ipc=host -p $TGI_PORT:80 -v ./data:/data --shm-size 1g -e HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN} -e model=${LLM_MODEL_ID} ghcr.io/huggingface/text-generation-inference:2.1.0 --model-id $LLM_MODEL_ID ``` #### Verify the TGI Service ```bash export your_ip=$(hostname -I | awk '{print $1}') curl http://${your_ip}:${TGI_PORT}/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \ -H 'Content-Type: application/json' ``` #### Setup Environment Variables ```bash export TGI_LLM_ENDPOINT="http://${your_ip}:${TGI_PORT}" ``` #### Start Text-to-SQL Microservice with Python Script Start Text-to-SQL microservice with below command. ```bash python3 opea_text2sql_microservice.py ``` --- ### 🚀 Start Microservice with Docker (Option 2) #### Start PostGreSQL Database Service Please refer to section [Start PostgresDB Service](#start-postgresdb-service) #### Start TGI Service Please refer to section [Start TGI Service](#start-tgi-service) #### Setup Environment Variables ```bash export TGI_LLM_ENDPOINT="http://${your_ip}:${TGI_PORT}" ``` #### Build Docker Image ```bash cd GenAIComps/ docker build -t opea/text2sql:latest -f comps/text2sql/src/Dockerfile . ``` #### Run Docker with CLI (Option A) ```bash export TGI_LLM_ENDPOINT="http://${your_ip}:${TGI_PORT}" docker run --runtime=runc --name="comps-langchain-text2sql" -p 9090:8080 --ipc=host -e llm_endpoint_url=${TGI_LLM_ENDPOINT} opea/text2sql:latest ``` #### Run via docker compose (Option B) ##### Setup Environment Variables. ```bash export TGI_LLM_ENDPOINT=http://${your_ip}:${TGI_PORT} export HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN} export LLM_MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3" export POSTGRES_USER=postgres export POSTGRES_PASSWORD=testpwd export POSTGRES_DB=chinook ``` ##### Start the services. - Xeon CPU ```bash cd comps/text2sql/deployment/docker_compose docker compose -f compose.yaml up text2sql -d ``` - Gaudi2 HPU ```bash cd comps/text2sql/deployment/docker_compose docker compose -f compose.yaml up text2sql-gaudi -d ``` --- ### ✅ Invoke the microservice. The Text-to-SQL microservice exposes the following API endpoints: - Test Database Connection ```bash curl --location http://${your_ip}:9090/v1/postgres/health \ --header 'Content-Type: application/json' \ --data '{"user": "'${POSTGRES_USER}'","password": "'${POSTGRES_PASSWORD}'","host": "'${your_ip}'", "port": "5442", "database": "'${POSTGRES_DB}'"}' ``` - Execute SQL Query from input text ```bash curl http://${your_ip}:9090/v1/text2sql\ -X POST \ -d '{"input_text": "Find the total number of Albums.","conn_str": {"user": "'${POSTGRES_USER}'","password": "'${POSTGRES_PASSWORD}'","host": "'${your_ip}'", "port": "5442", "database": "'${POSTGRES_DB}'"}}' \ -H 'Content-Type: application/json' ```