# LVM Microservice Visual Question and Answering is one of the multimodal tasks empowered by LVMs (Large Visual Models). This microservice supports visual Q&A by using LLaVA as the base large visual model. It accepts two inputs: a prompt and images. It outputs the answer to the prompt about the images. ## 🚀1. Start Microservice with Python (Option 1) ### 1.1 Install Requirements ```bash pip install -r requirements.txt ``` ### 1.2 Start LLaVA Service/Test - Xeon CPU ```bash # Start LLaVA service nohup python llava_server.py --device=cpu & # Wait until the server is up # Test python check_llava_server.py ``` - Gaudi2 HPU ```bash pip install optimum[habana] ``` ```bash # Start LLaVA service nohup python llava_server.py & # Test python check_llava_server.py ``` ## 🚀2. Start Microservice with Docker (Option 2) ### 2.1 Build Images #### 2.1.1 LLaVA Server Image - Xeon CPU ```bash cd ../../../ docker build -t opea/lvm-llava:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/integrations/dependency/llava/Dockerfile . ``` - Gaudi2 HPU ```bash cd ../../../ docker build -t opea/lvm-llava:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/lvms/src/integrations/dependency/llava/Dockerfile.intel_hpu . ``` ### 2.2 Start LLaVA and LVM Service #### 2.2.1 Start LLaVA server - Xeon ```bash docker run -p 8399:8399 -e http_proxy=$http_proxy --ipc=host -e https_proxy=$https_proxy opea/lvm-llava:latest ``` - Gaudi2 HPU ```bash docker run -p 8399:8399 --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy opea/lvm-llava:latest ``` #### 2.2.2 Test > Note: The `MAX_IMAGES` environment variable is used to specify the maximum number of images that will be sent from the LVM service to the LLaVA server. > If an image list longer than `MAX_IMAGES` is sent to the LVM server, a shortened image list will be sent to the LLaVA service. If the image list > needs to be shortened, the most recent images (the ones at the end of the list) are prioritized to send to the LLaVA service. Some LLaVA models have not > been trained with multiple images and may lead to inaccurate results. If `MAX_IMAGES` is not set, it will default to `1`. ```bash # Use curl/python # curl with an image and a prompt http_proxy="" curl http://localhost:9399/v1/lvm -XPOST -d '{"image": "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mP8/5+hnoEIwDiqkL4KAcT9GO0U4BxoAAAAAElFTkSuQmCC", "prompt":"What is this?"}' -H 'Content-Type: application/json' # curl with multiple images and a prompt (Note that depending on your MAX_IMAGES value, both images may not be sent to the LLaVA model) http_proxy="" curl http://localhost:9399/v1/lvm -XPOST -d '{"image": ["iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mNkYPhfz0AEYBxVSF+FAP5FDvcfRYWgAAAAAElFTkSuQmCC", "iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAYAAACNMs+9AAAAFUlEQVR42mNk+M9Qz0AEYBxVSF+FAAhKDveksOjmAAAAAElFTkSuQmCC"], "prompt":"What is in these images?"}' -H 'Content-Type: application/json' # curl with a prompt only (no image) http_proxy="" curl http://localhost:9399/v1/lvm -XPOST -d '{"image": "", "prompt":"What is deep learning?"}' -H 'Content-Type: application/json' # Test python check_llava_server.py ```