# Multimodal CLIP Embedding Microservice The Multimodal CLIP Embedding Microservice provides a powerful solution for converting textual and visual data into high-dimensional vector embeddings. These embeddings capture the semantic essence of the input, enabling robust applications in multi-modal data processing, information retrieval, recommendation systems, and more. --- ## Table of Contents 1. [Start Microservice](#start-microservice) 2. [Consume Embedding Service](#consume-embedding-service) --- ## Start Microservice ### Build Docker Image To build the Docker image, execute the following commands: ```bash cd ../../.. docker build -t opea/embedding:latest \ --build-arg https_proxy=$https_proxy \ --build-arg http_proxy=$http_proxy \ -f comps/embeddings/src/Dockerfile . ``` ### Run Docker with Docker Compose ```bash cd comps/embeddings/deployment/docker_compose/ docker compose up clip-embedding-server -d ``` --- ## Consume Embedding Service ### Check Service Status Verify that the embedding service is running properly by checking its health status with this command: ```bash curl http://localhost:6000/v1/health_check \ -X GET \ -H 'Content-Type: application/json' ``` ### Use the Embedding Service API The service supports [OpenAI API](https://platform.openai.com/docs/api-reference/embeddings)-compatible requests. **Single Text Input**: ```bash curl http://localhost:6000/v1/embeddings \ -X POST \ -d '{"input":"Hello, world!"}' \ -H 'Content-Type: application/json' ``` **Multiple Texts with Parameters**: ```bash curl http://localhost:6000/v1/embeddings \ -X POST \ -d '{"input":["Hello, world!","How are you?"], "dimensions":100}' \ -H 'Content-Type: application/json' ```