# Dataprep Microservice with Milvus ## 🚀1. Start Microservice with Docker ### 1.1 Start Milvus Server Please refer to this [readme](../../third_parties/milvus/src/README.md). ### 1.2 Setup Environment Variables ```bash export no_proxy=${your_no_proxy} export http_proxy=${your_http_proxy} export https_proxy=${your_http_proxy} export MILVUS_HOST=${your_host_ip} export MILVUS_PORT=19530 export COLLECTION_NAME=${your_collection_name} export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token} export EMBEDDING_MODEL_ID=${your_embedding_model_id} ``` ### 1.3 Start TEI Embedding Service First, start the TEI embedding server. ```bash your_port=6010 model="BAAI/bge-base-en-v1.5" docker run -p $your_port:80 -v ./data:/data --name tei_server -e http_proxy=$http_proxy -e https_proxy=$https_proxy --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.6 --model-id $model export TEI_EMBEDDING_ENDPOINT="http://localhost:$your_port" ``` ### 1.4 Build Docker Image ```bash cd ../../.. # build dataprep milvus docker image docker build -t opea/dataprep:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg no_proxy=$no_proxy -f comps/dataprep/src/Dockerfile . ``` ### 1.5 Run Docker with CLI (Option A) ```bash docker run -d --name="dataprep-milvus-server" -p 6010:6010 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e TEI_EMBEDDING_ENDPOINT=${TEI_EMBEDDING_ENDPOINT} -e MILVUS_HOST=${MILVUS_HOST} -e HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN} -e DATAPREP_COMPONENT_NAME="OPEA_DATAPREP_MILVUS" opea/dataprep:latest ``` ### 1.5 Run with Docker Compose (Option B) ```bash mkdir model cd model git clone https://huggingface.co/BAAI/bge-base-en-v1.5 cd ../ # Update `host_ip` and `HUGGINGFACEHUB_API_TOKEN` in set_env.sh . set_env.sh docker compose -f compose_milvus.yaml up -d ``` ## 🚀2. Consume Microservice ### 2.1 Consume Upload API Once document preparation microservice for Milvus is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database. Make sure the file path after `files=@` is correct. - Single file upload ```bash curl -X POST \ -H "Content-Type: multipart/form-data" \ -F "files=@./file.pdf" \ http://localhost:6010/v1/dataprep/ingest ``` You can specify chunk_size and chunk_size by the following commands. To avoid big chunks, pass a small chun_size like 500 as below (default 1500). ```bash curl -X POST \ -H "Content-Type: multipart/form-data" \ -F "files=@./file.pdf" \ -F "chunk_size=500" \ -F "chunk_overlap=100" \ http://localhost:6010/v1/dataprep/ingest ``` - Multiple file upload ```bash curl -X POST \ -H "Content-Type: multipart/form-data" \ -F "files=@./file1.pdf" \ -F "files=@./file2.pdf" \ -F "files=@./file3.pdf" \ http://localhost:6010/v1/dataprep/ingest ``` - Links upload (not supported for llama_index now) ```bash curl -X POST \ -F 'link_list=["https://www.ces.tech/"]' \ http://localhost:6010/v1/dataprep/ingest ``` or ```python import requests import json proxies = {"http": ""} url = "http://localhost:6010/v1/dataprep/ingest" urls = [ "https://towardsdatascience.com/no-gpu-no-party-fine-tune-bert-for-sentiment-analysis-with-vertex-ai-custom-jobs-d8fc410e908b?source=rss----7f60cf5620c9---4" ] payload = {"link_list": json.dumps(urls)} try: resp = requests.post(url=url, data=payload, proxies=proxies) print(resp.text) resp.raise_for_status() # Raise an exception for unsuccessful HTTP status codes print("Request successful!") except requests.exceptions.RequestException as e: print("An error occurred:", e) ``` We support table extraction from pdf documents. You can specify process_table and table_strategy by the following commands. "table_strategy" refers to the strategies to understand tables for table retrieval. As the setting progresses from "fast" to "hq" to "llm," the focus shifts towards deeper table understanding at the expense of processing speed. The default strategy is "fast". Note: If you specify "table_strategy=llm", You should first start TGI Service, please refer to 1.2.1, 1.3.1 in https://github.com/opea-project/GenAIComps/tree/main/comps/llms/README.md, and then `export TGI_LLM_ENDPOINT="http://${your_ip}:8008"`. ```bash curl -X POST -H "Content-Type: application/json" -d '{"path":"/home/user/doc/your_document_name","process_table":true,"table_strategy":"hq"}' http://localhost:6010/v1/dataprep ``` We support table extraction from pdf documents. You can specify process_table and table_strategy by the following commands. "table_strategy" refers to the strategies to understand tables for table retrieval. As the setting progresses from "fast" to "hq" to "llm," the focus shifts towards deeper table understanding at the expense of processing speed. The default strategy is "fast". Note: If you specify "table_strategy=llm", You should first start TGI Service, please refer to 1.2.1, 1.3.1 in https://github.com/opea-project/GenAIComps/tree/main/comps/llms/README.md, and then `export TGI_LLM_ENDPOINT="http://${your_ip}:8008"`. ```bash curl -X POST -H "Content-Type: application/json" -d '{"path":"/home/user/doc/your_document_name","process_table":true,"table_strategy":"hq"}' http://localhost:6010/v1/dataprep/ingest ``` ### 2.2 Consume get API To get uploaded file structures, use the following command: ```bash curl -X POST \ -H "Content-Type: application/json" \ http://localhost:6010/v1/dataprep/get ``` Then you will get the response JSON like this: ```json [ { "name": "uploaded_file_1.txt", "id": "uploaded_file_1.txt", "type": "File", "parent": "" }, { "name": "uploaded_file_2.txt", "id": "uploaded_file_2.txt", "type": "File", "parent": "" } ] ``` ### 2.3 Consume delete API To delete uploaded file/link, use the following command. The `file_path` here should be the `id` get from `/v1/dataprep/get` API. ```bash # delete link curl -X POST \ -H "Content-Type: application/json" \ -d '{"file_path": "https://www.ces.tech/.txt"}' \ http://localhost:6010/v1/dataprep/delete # delete file curl -X POST \ -H "Content-Type: application/json" \ -d '{"file_path": "uploaded_file_1.txt"}' \ http://localhost:6010/v1/dataprep/delete # delete all files and links, will drop the entire db collection curl -X POST \ -H "Content-Type: application/json" \ -d '{"file_path": "all"}' \ http://localhost:6010/v1/dataprep/delete ``` ## 🚀3. Troubleshooting 1. If you get errors from TEI Embedding Endpoint like `cannot find this task, maybe it has expired` while uploading files, try to reduce the `chunk_size` in the curl command like below (the default chunk_size=1500). ```bash curl -X POST \ -H "Content-Type: multipart/form-data" \ -F "files=@./file.pdf" \ -F "chunk_size=500" \ http://localhost:6010/v1/dataprep/ingest ```