# Retriever Microservice with Neo4J ## 🚀Start Microservice with Python ### Install Requirements ```bash pip install -r requirements.txt ``` ### Start Neo4J Server To launch Neo4j locally, first ensure you have docker installed. Then, you can launch the database with the following docker command. ```bash docker run \ -p 7474:7474 -p 7687:7687 \ -v $PWD/data:/data -v $PWD/plugins:/plugins \ --name neo4j-apoc \ -d \ -e NEO4J_AUTH=neo4j/password \ -e NEO4J_PLUGINS=\[\"apoc\"\] \ neo4j:latest ``` ### Setup Environment Variables ```bash export no_proxy=${your_no_proxy} export http_proxy=${your_http_proxy} export https_proxy=${your_http_proxy} export NEO4J_URI=${your_neo4j_url} export NEO4J_USERNAME=${your_neo4j_username} export NEO4J_PASSWORD=${your_neo4j_password} ``` ### Start Retriever Service ```bash python retriever_neo4j.py ``` ## 🚀Start Microservice with Docker ### Build Docker Image ```bash cd ../../ docker build -t opea/retriever-neo4j:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/neo4j/langchain/Dockerfile . ``` ### Run Docker with CLI ```bash docker run -d --name="retriever-neo4j-server" -p 7000:7000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e NEO4J_URI=${your_neo4j_host_ip} opea/retriever-neo4j:latest ``` ## 🚀3. Consume Retriever Service ### 3.1 Check Service Status ```bash curl http://${your_ip}:7000/v1/health_check \ -X GET \ -H 'Content-Type: application/json' ``` ### 3.2 Consume Embedding Service To consume the Retriever Microservice, you can generate a mock embedding vector of length 768 with Python. ```bash export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://${your_ip}:7000/v1/retrieval \ -X POST \ -d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding}}" \ -H 'Content-Type: application/json' ``` You can set the parameters for the retriever. ```bash export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://localhost:7000/v1/retrieval \ -X POST \ -d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"similarity\", \"k\":4}" \ -H 'Content-Type: application/json' ``` ```bash export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://localhost:7000/v1/retrieval \ -X POST \ -d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"similarity_distance_threshold\", \"k\":4, \"distance_threshold\":1.0}" \ -H 'Content-Type: application/json' ``` ```bash export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://localhost:7000/v1/retrieval \ -X POST \ -d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"similarity_score_threshold\", \"k\":4, \"score_threshold\":0.2}" \ -H 'Content-Type: application/json' ``` ```bash export your_embedding=$(python -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)") curl http://localhost:7000/v1/retrieval \ -X POST \ -d "{\"text\":\"What is the revenue of Nike in 2023?\",\"embedding\":${your_embedding},\"search_type\":\"mmr\", \"k\":4, \"fetch_k\":20, \"lambda_mult\":0.5}" \ -H 'Content-Type: application/json' ```