# Document Summary vLLM Microservice This microservice leverages LangChain to implement summarization strategies and facilitate LLM inference using vLLM. [vLLM](https://github.com/vllm-project/vllm) is a fast and easy-to-use library for LLM inference and serving, it delivers state-of-the-art serving throughput with a set of advanced features such as PagedAttention, Continuous batching and etc.. Besides GPUs, vLLM already supported [Intel CPUs](https://www.intel.com/content/www/us/en/products/overview.html) and [Gaudi accelerators](https://habana.ai/products). ## 🚀1. Start Microservice with Python 🐍 (Option 1) To start the LLM microservice, you need to install python packages first. ### 1.1 Install Requirements ```bash pip install -r requirements.txt ``` ### 1.2 Start LLM Service ```bash export HF_TOKEN=${your_hf_api_token} export LLM_MODEL_ID=${your_hf_llm_model} docker run -p 8008:80 -v ./data:/data --name llm-docsum-vllm --shm-size 1g opea/vllm-gaudi:latest --model-id ${LLM_MODEL_ID} ``` ### 1.3 Verify the vLLM Service ```bash curl http://${your_ip}:8008/v1/chat/completions \ -X POST \ -H "Content-Type: application/json" \ -d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning? "}]}' ``` ### 1.4 Start LLM Service with Python Script ```bash export vLLM_ENDPOINT="http://${your_ip}:8008" python llm.py ``` ## 🚀2. Start Microservice with Docker 🐳 (Option 2) If you start an LLM microservice with docker, the `docker_compose_llm.yaml` file will automatically start a vLLM/vLLM service with docker. To setup or build the vLLM image follow the instructions provided in [vLLM Gaudi](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/text-generation/vllm/langchain#vllm-on-gaudi) ### 2.1 Setup Environment Variables In order to start vLLM and LLM services, you need to setup the following environment variables first. ```bash export HF_TOKEN=${your_hf_api_token} export vLLM_ENDPOINT="http://${your_ip}:8008" export LLM_MODEL_ID=${your_hf_llm_model} ``` ### 2.2 Build Docker Image ```bash cd ../../../../../ docker build -t opea/llm-docsum-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/vllm/langchain/Dockerfile . ``` To start a docker container, you have two options: - A. Run Docker with CLI - B. Run Docker with Docker Compose You can choose one as needed. ### 2.3 Run Docker with CLI (Option A) ```bash docker run -d --name="llm-docsum-vllm-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e vLLM_ENDPOINT=$vLLM_ENDPOINT -e HF_TOKEN=$HF_TOKEN opea/llm-docsum-vllm:latest ``` ### 2.4 Run Docker with Docker Compose (Option B) ```bash docker compose -f docker_compose_llm.yaml up -d ``` ## 🚀3. Consume LLM Service ### 3.1 Check Service Status ```bash curl http://${your_ip}:9000/v1/health_check\ -X GET \ -H 'Content-Type: application/json' ``` ### 3.2 Consume LLM Service ```bash # Enable streaming to receive a streaming response. By default, this is set to True. curl http://${your_ip}:9000/v1/chat/docsum \ -X POST \ -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en"}' \ -H 'Content-Type: application/json' # Disable streaming to receive a non-streaming response. curl http://${your_ip}:9000/v1/chat/docsum \ -X POST \ -d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en", "streaming":false}' \ -H 'Content-Type: application/json' # Use Chinese mode. By default, language is set to "en" curl http://${your_ip}:9000/v1/chat/docsum \ -X POST \ -d '{"query":"2024年9月26日,北京——今日,英特尔正式发布英特尔® 至强® 6性能核处理器(代号Granite Rapids),为AI、数据分析、科学计算等计算密集型业务提供卓越性能。", "max_tokens":32, "language":"zh", "streaming":false}' \ -H 'Content-Type: application/json' ```