# llm-uservice Helm chart for deploying LLM microservice. llm-uservice depends on TGI, you should set TGI_LLM_ENDPOINT as tgi endpoint. ## (Option1): Installing the chart separately First, you need to install the tgi chart, please refer to the [tgi](../tgi) chart for more information. After you've deployted the tgi chart successfully, please run `kubectl get svc` to get the tgi service endpoint, i.e. `http://tgi`. To install the chart, run the following: ```console cd GenAIInfra/helm-charts/common/llm-uservice export HFTOKEN="insert-your-huggingface-token-here" export TGI_LLM_ENDPOINT="http://tgi" helm dependency update helm install llm-uservice . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set TGI_LLM_ENDPOINT=${TGI_LLM_ENDPOINT} --wait ``` ## (Option2): Installing the chart with dependencies automatically ```console cd GenAIInfra/helm-charts/common/llm-uservice export HFTOKEN="insert-your-huggingface-token-here" helm dependency update helm install llm-uservice . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set autodependency.enabled=true --wait ``` ## Verify To verify the installation, run the command `kubectl get pod` to make sure all pods are running. Then run the command `kubectl port-forward svc/llm-uservice 9000:9000` to expose the llm-uservice service for access. Open another terminal and run the following command to verify the service if working: ```console curl http://localhost:9000/v1/chat/completions \ -X POST \ -d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \ -H 'Content-Type: application/json' ``` ## Values | Key | Type | Default | Description | | ------------------------------- | ------ | ---------------- | ------------------------------- | | global.HUGGINGFACEHUB_API_TOKEN | string | `""` | Your own Hugging Face API token | | image.repository | string | `"opea/llm-tgi"` | | | service.port | string | `"9000"` | | | TGI_LLM_ENDPOINT | string | `""` | LLM endpoint |