# Deploy DocSum in Kubernetes Cluster > [NOTE] > The following values must be set before you can deploy: > HUGGINGFACEHUB_API_TOKEN > > You can also customize the "MODEL_ID" and "model-volume" > > You need to make sure you have created the directory `/mnt/opea-models` to save the cached model on the node where the DocSum workload is running. Otherwise, you need to modify the `docsum.yaml` file to change the `model-volume` to a directory that exists on the node. ## Deploy On Xeon ``` cd GenAIExamples/DocSum/kubernetes/intel/cpu/xeon/manifests export HUGGINGFACEHUB_API_TOKEN="YourOwnToken" sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" docsum.yaml kubectl apply -f docsum.yaml ``` ## Deploy On Gaudi ``` cd GenAIExamples/DocSum/kubernetes/intel/hpu/gaudi/manifests export HUGGINGFACEHUB_API_TOKEN="YourOwnToken" sed -i "s/insert-your-huggingface-token-here/${HUGGINGFACEHUB_API_TOKEN}/g" docsum.yaml kubectl apply -f docsum.yaml ``` ## Verify Services To verify the installation, run the command `kubectl get pod` to make sure all pods are running. Then run the command `kubectl port-forward svc/docsum 8888:8888` to expose the DocSum service for access. Open another terminal and run the following command to verify the service if working: ```console curl http://localhost:8888/v1/docsum \ -H 'Content-Type: application/json' \ -d '{"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' ```