# Prediction Guard Introduction [Prediction Guard](https://docs.predictionguard.com) allows you to utilize hosted open access LLMs, LVMs, and embedding functionality with seamlessly integrated safeguards. In addition to providing a scalable access to open models, Prediction Guard allows you to configure factual consistency checks, toxicity filters, PII filters, and prompt injection blocking. Join the [Prediction Guard Discord channel](https://discord.gg/TFHgnhAFKd) and request an API key to get started. ## Get Started ### Build Docker Image ```bash cd ../../.. docker build -t opea/llm-textgen-predictionguard:latest -f comps/llms/text-generation/predictionguard/Dockerfile . ``` ### Run the Predictionguard Microservice ```bash docker run -d -p 9000:9000 -e PREDICTIONGUARD_API_KEY=$PREDICTIONGUARD_API_KEY --name llm-textgen-predictionguard opea/llm-textgen-predictionguard:latest ``` ## Consume the Prediction Guard Microservice See the [Prediction Guard docs](https://docs.predictionguard.com/) for available model options. ### Without streaming ```bash curl -X POST http://localhost:9000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "Hermes-2-Pro-Llama-3-8B", "query": "Tell me a joke.", "max_tokens": 100, "temperature": 0.7, "top_p": 0.9, "top_k": 50, "stream": false }' ``` ### With streaming ```bash curl -N -X POST http://localhost:9000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "Hermes-2-Pro-Llama-3-8B", "query": "Tell me a joke.", "max_tokens": 100, "temperature": 0.7, "top_p": 0.9, "top_k": 50, "stream": true }' ```