# Dataprep Microservice with Pinecone ## 🚀Start Microservice with Python ### Install Requirements ```bash pip install -r requirements.txt ``` ### Start Pinecone Server Please refer to this [readme](../../../vectorstores/pinecone/README.md). ### Setup Environment Variables ```bash export http_proxy=${your_http_proxy} export https_proxy=${your_http_proxy} export PINECONE_API_KEY=${PINECONE_API_KEY} export PINECONE_INDEX_NAME=${PINECONE_INDEX_NAME} ``` ### Start Document Preparation Microservice for Pinecone with Python Script Start document preparation microservice for Pinecone with below command. ```bash python prepare_doc_pinecone.py ``` ## 🚀Start Microservice with Docker ### Build Docker Image ```bash cd ../../../../ docker build -t opea/dataprep-pinecone:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/pinecone/langchain/Dockerfile . ``` ### Run Docker with CLI ```bash docker run -d --name="dataprep-pinecone-server" -p 6000:6000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy opea/dataprep-pinecone:latest ``` ### Setup Environment Variables ```bash export http_proxy=${your_http_proxy} export https_proxy=${your_http_proxy} export PINECONE_API_KEY=${PINECONE_API_KEY} export PINECONE_INDEX_NAME=${PINECONE_INDEX_NAME} ``` ### Run Docker with Docker Compose ```bash cd comps/dataprep/pinecone/langchain docker compose -f docker-compose-dataprep-pinecone.yaml up -d ``` ## Invoke Microservice Once document preparation microservice for Pinecone is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database. ```bash curl -X POST -H "Content-Type: application/json" -d '{"path":"/path/to/document"}' http://localhost:6000/v1/dataprep ```